972 resultados para T-Box Domain Proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cdca4 (Hepp) was originally identified as a gene expressed specifically in hematopoietic progenitor cells as opposed to hematopoietic stem cells. More recently, it has been shown to stimulate p53 activity and also lead to p53-independent growth inhibition when overexpressed. We independently isolated the murine Cdca4 gene in a genomic expression-based screen for genes involved in mammalian craniofacial development, and show that Cdca4 is expressed in a spatio-temporally restricted pattern during mouse embryogenesis. In addition to expression in the facial primordia including the pharyngeal arches, Cdca4 is expressed in the developing limb buds, brain, spinal cord, dorsal root ganglia, teeth, eye and hair follicles. Along with a small number of proteins from a range of species, the predicted CDCA4 protein contains a novel SERTA motif in addition to cyclin A-binding and PHD bromodomain-binding regions of homology. While the function of the SERTA domain is unknown, proteins containing this domain have previously been linked to cell cycle progression and chromatin remodelling. Using in silico database mining we have extended the number of evolutionarily conserved orthologues of known SERTA domain proteins and identified an uncharacterised member of the SERTA domain family, SERTAD4, with orthologues to date in human, mouse, rat, dog, cow, Tetraodon and chicken. Immunolocalisation of transiently and stably transfected epitope-tagged CDCA4 protein in mammalian cells suggests that it resides predominantly in the nucleus throughout all stages of the cell cycle. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.

In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.

The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex sub-cellular structures, and many other cellular phenomena. They form three-dimensional assemblies, which act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we employ various experimental, theoretical and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclic di-GMP was the first cyclic di-nucleotide second messenger described, presaging the discovery of additional cyclic di-nucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, to include both enzymatically active and inactive members with a subset involved in synthesis and degradation of other cyclic di-nucleotides. Here we summarize current knowledge of sequence and structural varitions that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL and HD-GYP domain proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Migraine without aura is the most common form of migraine, characterized by recurrent disabling headache and associated autonomic symptoms. To identify common genetic variants associated with this migraine type, we analyzed genome-wide association data of 2,326 clinic-based German and Dutch individuals with migraine without aura and 4,580 population-matched controls. We selected SNPs from 12 loci with 2 or more SNPs associated with P values of <1 x 10(-5) for replication testing in 2,508 individuals with migraine without aura and 2,652 controls. SNPs at two of these loci showed convincing replication: at 1q22 (in MEF2D; replication P = 4.9 x 10(-4); combined P = 7.06 x 10(-11)) and at 3p24 (near TGFBR2; replication P = 1.0 x 10(-4); combined P = 1.17 x 10(-9)). In addition, SNPs at the PHACTR1 and ASTN2 loci showed suggestive evidence of replication (P = 0.01; combined P = 3.20 x 10(-8) and P = 0.02; combined P = 3.86 x 10(-8), respectively). We also replicated associations at two previously reported migraine loci in or near TRPM8 and LRP1. This study identifies the first susceptibility loci for migraine without aura, thereby expanding our knowledge of this debilitating neurological disorder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem (SAM) organisation. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Major Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alfavirukset ovat positiivissäkeisiä RNA-viruksia, jotka kuuluvat Togaviridea –heimoon. Alfaviruksia levittävät Aedes –suvun hyttyset ja niitä esiintyy Etelämanteretta lukuunottamatta kaikilla mantereilla. Alfaviruksia on tähän mennessä löydetty 29 lajia ja ne voidaan jakaa uuden ja vanhan maailman viruksiin niiden maantieteellisen esiintyvyyden ja taudinaiheuttamiskyvyn mukaan. Chikunkunyavirus (CHIKV) on yksi vanhan maailman alfaviruksista, jota esiintyy muun muassa Afrikassa ja Aasiassa. Ilmaston lämmettyä se on leviämässä myös eteläiseen Eurooppaan. Ihmisessä se aiheuttaa muun muassa kuumetta, päänsärkyä, ihottumaa ja niveltulehdusta, joka voi kestää useita vuosia ja ne voivat olla hyvinkin kivuliaita. Pienillä lapsilla chikungunya on todettu aiheuttavan myös neurologisia oireita kuten aivotulehdusta. Alfaviruksen genomi koodaa neljää rakenneproteiinia ja neljää replikaatioproteiinia. Replikaatioproteiineista nsP3 sisältää makrodomeeniosan. Makrodomeeniproteiinit ovat eliökunnassa konservoituneita, mutta makrodomeeniproteiinien tarkkaa merkitystä ei vielä tunneta. Makrodomeenien on osoitettu sitovan ADP-riboosia ja sen johdannaisia ja alfaviruksen nsP3-proteiinin on osoitettu olevan tärkeä osa viruksen replikaatiossa. Tutkimuksen tavoitteena oli tutkia makrodomeeniproteiiniin sitoutuvien yhdisteiden käyttöä antiviraalisena yhdisteinä. Tietokonemallinnuksella valittiin antiviraalitutkimuksiin 45 yhdistettä, joiden oletettiin sitoutuvan makrodomeeniproteiiniin. Kilpailevassa sitoutumiskokeessa viisi yhdistettä esti yli 50 % poly-ADP-riboosia (PAR) sitoutumasta MDO1-makrodomeeniproteiiniin, jolla tietokonemallinnus oli tehty. SFV-makrodomeeniproteiinilla tehdyssä kokeessa vain yksi yhdiste esti yli 50 % poly-ADP-riboosin sitoutumisen. SFV-antiviraalikokeessa seitsemällä yhdisteellä inhibitioprosentti oli yli 50 %. Näillä yhdisteillä ei kuitenkaan ollut merkittävää vaikutusta poly-ADP-riboosin sitoutumisen estossa. CHIKV-replikonikokeessa yli 50 % inhibitioprosentti oli viidellä yhdisteellä. Muiden mahdollisia vaikutusmekanismeja tutkittiin selvittämällä estävätkö yhdisteet virusta pääsemästä solun sisään. Tässä kokeessa tutkituista yhdisteistä lähes kaikilla oli vaikutusta viruksen soluun pääsyn estossa. Yleisesti ottaen kyky estää PAR:n sitoutuminen makrodomeeniproteiineihin ja antiviraaliset vaikutukset eivät korreloineet keskenään tutkittavilla yhdisteillä. Vaikka antiviraalista vaikutusta omaavat yhdisteet eivät osoittaneetkaan makrodomeeni-inhibiitiota, työssä löydettiin potentiaalisia antiviraalisia yhdisteitä joiden käyttö viruksen soluun pääsyn estäjinä antaa aihetta jatkotutkimuksille.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Of the similar to 4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for similar to 2877 ORFs, covering similar to 70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small-angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst phase of folding, we find that FRET experiments overestimate radius of gyration, R-g, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract R-g from the FRET efficiency. FRET experiments estimate approximate to 6 angstrom decrease in R-g when the actual decrease is approximate to 3 angstrom on guanidinium chloride denaturant dilution from 7.5 to 1 M, thereby suggesting pronounced compaction in the protein dimensions in the burst phase. The approximate to 3 angstrom decrease is close to the statistical uncertainties of the R-g data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition-state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the Psi-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depends on protein topology and is not stabilized by local interactions alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative disease. HD has no cure, and patients pass away 10-20 years after the onset of symptoms. The causal mutation for HD is a trinucleotide repeat expansion in exon 1 of the huntingtin gene that leads to a polyglutamine (polyQ) repeat expansion in the N-terminal region of the huntingtin protein. Interestingly, there is a threshold of 37 polyQ repeats under which little or no disease exists; and above which, patients invariably show symptoms of HD. The huntingtin protein is a 350 kDa protein with unclear function. As the polyQ stretch expands, its propensity to aggregate increases with polyQ length. Models for polyQ toxicity include formation of aggregates that recruit and sequester essential cellular proteins, or altered function producing improper interactions between mutant huntingtin and other proteins. In both models, soluble expanded polyQ may be an intermediate state that can be targeted by potential therapeutics.

In the first study described herein, the conformation of soluble, expanded polyQ was determined to be linear and extended using equilibrium gel filtration and small-angle X-ray scattering. While attempts to purify and crystallize domains of the huntingtin protein were unsuccessful, the aggregation of huntingtin exon 1 was investigated using other biochemical techniques including dynamic light scattering, turbidity analysis, Congo red staining, and thioflavin T fluorescence. Chapter 4 describes crystallization experiments sent to the International Space Station and determination of the X-ray crystal structure of the anti-polyQ Fab MW1. In the final study, multimeric fibronectin type III (FN3) domain proteins were engineered to bind with high avidity to expanded polyQ tracts in mutant huntingtin exon 1. Surface plasmon resonance was used to observe binding of monomeric and multimeric FN3 proteins with huntingtin.

Relevância:

80.00% 80.00%

Publicador: