895 resultados para T cell activation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD26 is a T cell activation antigen known to bind adenosine deaminase and have dipeptidyl peptidase IV activity. Cross-linking of CD26 and CD3 with immobilized mAbs can deliver a costimulatory signal that contributes to T cell activation. Our earlier studies revealed that cross-linking of CD26 induces its internalization, the phosphorylation of a number of proteins involved in the signaling pathway, and subsequent T cell proliferation. Although these findings suggest the importance of internalization in the function of CD26, CD26 has only 6 aa residues in its cytoplasmic region with no known motif for endocytosis. In the present study, we have identified the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGFIIR) as a binding protein for CD26 and that mannose 6-phosphate (M6P) residues in the carbohydrate moiety of CD26 are critical for this binding. Activation of peripheral blood T cells results in the mannose 6 phosphorylation of CD26. In addition, the cross-linking of CD26 with an anti-CD26 antibody induces not only capping and internalization of CD26 but also colocalization of CD26 with M6P/IGFIIR. Finally, both internalization of CD26 and the T cell proliferative response induced by CD26-mediated costimulation were inhibited by the addition of M6P, but not by glucose 6-phosphate or mannose 1-phosphate. These results indicate that internalization of CD26 after cross-linking is mediated in part by M6P/IGFIIR and that the interaction between mannose 6-phosphorylated CD26 and M6P/IGFIIR may play an important role in CD26-mediated T cell costimulatory signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell recognition typically involves both the engagement of a specific T cell receptor with a peptide/major histocompatibility complex (MHC) and a number of accessory interactions. One of the most important interactions is between the integrin lymphocyte function-associated antigen 1 (LFA-1) on the T cell and intracellular adhesion molecule 1 (ICAM-1) on an antigen-presenting cell. By using fluorescence video microscopy and an ICAM-1 fused to a green fluorescent protein, we find that the elevation of intracellular calcium in the T cell that is characteristic of activation is followed almost immediately by the rapid accumulation of ICAM-1 on a B cell at a tight interface between the two cells. This increased density of ICAM-1 correlates with the sustained elevation of intracellular calcium in the T cell, known to be critical for activation. The use of peptide/MHC complexes and ICAM-1 on a supported lipid bilayer to stimulate T cells also indicates a major role for ICAM-1/LFA-1 in T cell activation but, surprisingly, not for adhesion, as even in the absence of ICAM-1 the morphological changes and adhesive characteristics of an activated T cell are seen in this system. We suggest that T cell antigen receptor-mediated recognition of a very small number of MHC/peptide complexes could trigger LFA-1/ICAM-1 clustering and avidity regulation, thus amplifying and stabilizing the production of second messengers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmembrane protein tyrosine phosphatases, such as CD45, can act as both positive and negative regulators of cellular signaling. CD45 positively modulates T cell receptor (TCR) signaling by constitutively priming p56lck through the dephosphorylation of the C-terminal negative regulatory phosphotyrosine site. However, CD45 can also exert negative effects on cellular processes, including events triggered by integrin-mediated adhesion. To better understand these opposing actions of tyrosine phosphatases, the subcellular compartmentalization of CD45 was imaged by using laser scanning confocal microscopy during functional TCR signaling of live T lymphocytes. On antigen engagement, CD45 was first excluded from the central region of the interface between the T cell and the antigen-presenting surface where CD45 would inhibit integrin activation. Subsequently, CD45 was recruited back to the center of the contact to an area adjacent to the site of sustained TCR engagement. Thus, CD45 is well positioned within a supramolecular assembly in the vicinity of the engaged TCR, where CD45 would be able to maintain src-kinase activity for the duration of TCR engagement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-α-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2−/− T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2−/− T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agents that increase intracellular cAMP inhibit the activation and function of T cells and can lead to cell death. Recently, it has been postulated that cAMP inhibits T cell function in large part by acting as a brake on the T cell receptor and costimulatory receptor pathways. Therefore, for full activation of the T cell to occur, this inhibitory influence must be removed. One likely mechanism for accomplishing this is by up-regulation and/or activation of specific cyclic nucleotide phosphodiesterases (PDEs), and such a mechanism for one phosphodiesterase, PDE7A1, has been reported. In this paper, we extend this mechanism to another isozyme variant of the same PDE family, PDE7A3. We also report the full-length sequence of human PDE8A1 and show that it also is induced in response to a combination of T cell receptor and costimulatory receptor pathway activation. However, the time course for induction of PDE8A1 is slower than that of PDE7A1. The basal level measured and, therefore, the apparent fold induction of PDE7A1 mRNA and protein depend in large part on the method of isolation of the T cells. On the other hand, regardless of the isolation method, the basal levels of PDE7A3 and PDE8A1 are very low and fold activation is much higher. Constitutively expressed PDE8A1 and PDE7A3 also have been isolated from a human T cell line, Hut78.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian immune system must specifically recognize and eliminate foreign invaders but refrain from damaging the host. This task is accomplished in part by the production of a large number of T lymphocytes, each bearing a different antigen receptor to match the enormous variety of antigens present in the microbial world. However, because antigen receptor diversity is generated by a random mechanism, the immune system must tolerate the function of T lymphocytes that by chance express a self-reactive antigen receptor. Therefore, during early development, T cells that are specific for antigens expressed in the thymus are physically deleted. The population of T cells that leaves the thymus and seeds the secondary lymphoid organs contains helpful cells that are specific for antigens from microbes but also potentially dangerous T cells that are specific for innocuous extrathymic self antigens. The outcome of an encounter by a peripheral T cell with these two types of antigens is to a great extent determined by the inability of naive T cells to enter nonlymphoid tissues or to be productively activated in the absence of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD27, a member of the tumor necrosis factor (TNF) receptor family, binds to its ligand CD70, a member of the TNF family, and subsequently induces T-cell costimulation and B-cell activation. CD27 is expressed on resting T and B cells, whereas CD70 is expressed on activated T and B cells. Utilizing transfected murine pre-B-cell lines expressing human CD27 or CD70, we have examined the effect of such transfectant cells on human B-cell IgG production and B-cell proliferation. We show that the addition of CD27-transfected cells to a T-cell-dependent, pokeweed mitogen-driven B-cell IgG synthesis system resulted in marked inhibition of IgG production, whereas the addition of CD70-transfected cells enhanced IgG production. The inhibition and enhancement of pokeweed mitogen-driven IgG production by CD27 and CD70 transfectants were abrogated by pretreatment with anti-CD27 and anti-CD70 monoclonal antibodies, respectively. In contrast, little or no inhibition of IgG production and B-cell proliferation was noted with CD27-transfected cells or either anti-CD27 or CD70 monoclonal antibody in a T-cell-independent Staphylococcus aureus/interleukin 2-driven B-cell activation system. In this same system CD70-transfected cells enhanced B-cell IgG production and B-cell proliferation, and this enhancement could be gradually abrogated by addition of increasing numbers of CD27-transfected cells. These results clearly demonstrate that interactions among subsets of T cells expressing CD27 and CD70 play a key role in regulating B-cell activation and immunoglobulin synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of small resting B cells with soluble F(ab')2 fragments of anti-IgM, an analogue of T-independent type 2 antigens, induced activation characterized by proliferation and the expression of surface CD5. In contrast, B cells induced to proliferate in response to thymus-dependent inductive signals provided by either fixed activated T-helper 2 cells or soluble CD40 ligand-CD8 (CD40L) recombinant protein displayed elevated levels of CD23 (Fc epsilon II receptor) and no surface CD5. Treatment with anti-IgM and CD40L induced higher levels of proliferation and generated a single population of B cells coexpressing minimal amounts of CD5 and only a slight elevation of CD23. Anti-IgM- but not CD40L-mediated activation was highly sensitive to inhibition by cyclosporin A and FK520. Sp-cAMPS, an analogue of cAMP, augmented CD40L and suppressed surface IgM-mediated activation. Taken together these results are interpreted to mean that there is a single population of small resting B cells that can respond to either T-independent type 2 (surface IgM)- or T-dependent (CD40)-mediated activation. In response to different intracellular signals these cells are induced to enter alternative differentiation pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental models of orthotopic liver transplantation (OLT) have shown that the very early events post-OLT are critical in distinguishing immunogenic and tolerogenic reactions. In rodents, increased leukocyte apoptosis and cytokine expression have been demonstrated in tolerogenic strain combinations. Information from human OLT recipients is less abundant. The aim of this study was to determine the amount of early leukocyte activation and apoptosis following human OLT, and to correlate this with subsequent rejection status. Peripheral blood mononuclear cells (PBMC) were isolated from 76 patients undergoing OLT - on the day prior, 5 hrs after reperfusion (day 0), and 18-24 hrs post-OLT (day 1). The mean level of apoptotic PBMCs on post OLT day 1 was higher than healthy recipients (0.9% +/- 0.2 vs. 0.2% +/- 0.1, p = 0.013). Apoptosis was greater in nonrejecting (NR) (1.1% +/- 0.3) compared with acutely-rejecting (R) (0.3% +/- 0.1, p = 0.021) patients. On day 1, PBMC from NR patients had increased expression of IFN-gamma (p = 0.006), IL-10 (p = 0.016), and CD40 ligand (p = 0.02) compared with R. Donor cell chimerism on day 1 did not differ between the groups indicating that this was unlikely to account for increased PBMC apoptosis in the NR group. Interestingly, the level of chimerism on day 0 was significantly higher in NR (3.8% +/- 0.6) compared with R (1.2% +/- 0.4, p = 0.004) patients and there was a close correlation between chimerism on day 0 and cytokine expression on day 1. These results imply that similar mechanisms are occurring in the human liver to promote graft acceptance as in the experimental models of liver transplantation and suggest that strategies that promote liver transplant acceptance in rodents might be applicable to humans.