903 resultados para Synthetic Aperture Radar(SAR)
Resumo:
The phenological stages of onion fields in the first year of growth are estimated using polarimetric observables and single-polarization intensity channels. Experiments are undertaken on a time series of RADARSAT-2 C-band full-polarimetric synthetic aperture radar (SAR) images collected in 2009 over the Barrax region, Spain, where ground truth information about onion growth stages is provided by the European Space Agency (ESA)-funded agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging (AgriSAR) field campaign conducted in that area. The experimental results demonstrate that polarimetric entropy or copolar coherence when used jointly with the cross-polarized intensity allows unambiguously distinguishing three phenological intervals.
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
In the last twenty years aerospace and automotive industries started working widely with composite materials, which are not easy to test using classic Non-Destructive Inspection (NDI) techniques. Pairwise, the development of safety regulations sets higher and higher standards for the qualification and certification of those materials. In this thesis a new concept of a Non-Destructive defect detection technique is proposed, based on Ultrawide-Band (UWB) Synthetic Aperture Radar (SAR) imaging. Similar SAR methods are yet applied either in minefield [22] and head stroke [14] detection. Moreover feasibility studies have already demonstrated the validity of defect detection by means of UWB radars [12, 13]. The system was designed using a cheap commercial off-the-shelf radar device by Novelda and several tests of the developed system have been performed both on metallic specimen (aluminum plate) and on composite coupon (carbon fiber). The obtained results confirm the feasibility of the method and highlight the good performance of the developed system considered the radar resolution. In particular, the system is capable of discerning healthy coupons from damaged ones, and correctly reconstruct the reflectivity image of the tested defects, namely a 8 x 8 mm square bulge and a 5 mm drilled holes on metal specimen and a 5 mm drilled hole on composite coupon.
Resumo:
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.
Resumo:
干涉合成孔径雷达 (Interferometric Synthetic Aperture Radar,InSAR) 是以合成孔径雷达复数据提取的相位为信息源获取地表三维信息和海表散射体运动信息的新型微波成像雷达。 InSAR通过两幅天线同时观测 (单轨模式),或两次近平行的观测 (重复轨道模式),获取地面或海面同一景观的复图像对。20世纪90年代以来,InSAR陆地和海洋研究成为微波遥感的热点,广泛应用于地表变形监测、南极冰流测量、地面或海面慢速运动目标检测等领域。 近年来,国际上逐渐应用机载顺轨或交轨干涉合成孔径雷达进行海表面流速测量以及海面波成像机制研究。相对于传统单天线合成孔径雷达 (Synthetic Aperture Radar, SAR),双天线干涉合成孔径雷达 (InSAR) 测量海表面波有着独特的优势: (1) InSAR复图像的相位近似正比于海面散射体的径向速度,这种内在的成像机制提供了直接测量海表面动态运动的机会。 (2) 真实孔径雷达调制传递函数几乎对InSAR相位图像没有影响,而对传统SAR图像影响较大。 基于干涉合成孔径雷达测量海浪的优势,本文做了一些干涉合成孔径雷达海浪遥感理论与应用研究工作,主要内容大致可归纳如下: (1)基于新建立的顺轨干涉合成孔径雷达 (Along-Track Interferometric Synthetic Aperture Radar,ATI-SAR) 相位谱与海浪谱之间的非线性映射关系,通过数值模拟研究了不同雷达参数和海况参数对应的ATI-SAR相位谱。数值模拟结果表明:距离速度比率、雷达入射角、天线间距和有效波高和波长比率是影响ATI-SAR海浪成像的重要因素。进一步,利用机载X波段水平极化相位图像和机载C波段水平极化相位图像谱结合方向波骑士浮标测量的海浪方向谱验证了ATI-SAR相位谱与海浪谱之间的非线性映射关系。结果显示用前向映射关系计算的相位谱与实际观测的相位谱较为一致,二者相关系数总体大于0.6,而且对成像非线性不敏感. (2)建立了包含海表面高度和速度聚束的交轨干涉合成孔径雷达 (Across-Track Interferometric Synthetic Aperture Radar,XTI-SAR) 涌浪干涉相位模型,得到了涌浪成像的解析表达式,进一步研究了XTI-SAR沿方位向传播的涌浪成像机制。定义二次谐波振幅与基波振幅比率来表征成像非线性,通过比较XTI-SAR和ATI-SAR相位的二阶调和分量,分析不同海况和干涉SAR参数情况下的数值模拟,结果表明:当速度聚束弱时,XTI-SAR相位比ATI-SAR相位具有较强的非线性,ATI-SAR比XTI-SAR更适合测量海浪。当速度聚束强时,XTI-SAR相位比ATI-SAR相位具有较弱的非线性,XTI-SAR比ATI-SAR更适合测量海浪。 (3)基于包含海表面高度和速度聚束的交轨干涉合成孔径雷达 (XTI-SAR) 涌浪干涉相位模型,结合多维高斯变量的特征函数方法建立了新的XTI-SAR相位谱与海浪谱非线性积分变换。新积分变换不同于Bao (1999) 建立的积分变换,两者形式上区别在于新积分变换中包含了长波径向轨道速度一阶倒数项。数值模拟显示:通常情况下,长波径向轨道速度一阶倒数项不能忽略。进一步,我们针对不同雷达参数和海况结合新非线积分变换对XTI-SAR海浪成像进行了数值模拟,结果表明:同顺轨干涉合成孔径雷达 (ATI-SAR) 海浪成像一致,距离速度比率 和有效波高与波长比率 是影响XTI-SAR海浪成像的重要因子。 (4)基于新的ATI-SAR相位谱与海浪谱之间的非线性映射关系,发展了利用ATI-SAR相位图像反演海浪方向谱的参数化反演模式,并由此得到海浪波长、波向和有效波高。反演结果与现场浮标观测结果比较一致。相对于其它反演模式,参数化反演模式的优点在于:(1) 不需要任何附加信息如初猜海浪谱、散射计提供的风速风向等信息。 (2) 不需要对相位图像进行辐射定标,可以由反演的海浪谱直接计算有效波高。(3) 反演结束后还可以得到成像区域的局地风速信息。因此,参数化反演模式可以实现风、浪信息的联合反演。
Resumo:
A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.
Resumo:
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
Resumo:
Recent severe flooding in the UK has highlighted the need for better information on flood risk, increasing the pressure on engineers to enhance the capabilities of computer models for flood prediction. This paper evaluates the benefits to be gained from the use of remotely sensed data to support flood modelling. The remotely sensed data available can be used either to produce high-resolution digital terrain models (DTMs) (light detection and ranging (Lidar) data), or to generate accurate inundation mapping of past flood events (airborne synthetic aperture radar (SAR) data and aerial photography). The paper reports on the modelling of real flood events that occurred at two UK sites on the rivers Severn and Ouse. At these sites a combination of remotely sensed data and recorded hydrographs was available. It is concluded first that light detection and ranging Lidar generated DTMs support the generation of considerably better models and enhance the visualisation of model results and second that flood outlines obtained from airborne SAR or aerial images help develop an appreciation of the hydraulic behaviour of important model components, and facilitate model validation. The need for further research is highlighted by a number of limitations, namely: the difficulties in obtaining an adequate representation of hydraulically important features such as embankment crests and walls; uncertainties in the validation data; and difficulties in extracting flood outlines from airborne SAR images in urban areas.
Resumo:
Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.
Resumo:
Objective to establish a methodology for the oil spill monitoring on the sea surface, located at the Submerged Exploration Area of the Polo Region of Guamaré, in the State of Rio Grande do Norte, using orbital images of Synthetic Aperture Radar (SAR integrated with meteoceanographycs products. This methodology was applied in the following stages: (1) the creation of a base map of the Exploration Area; (2) the processing of NOAA/AVHRR and ERS-2 images for generation of meteoceanographycs products; (3) the processing of RADARSAT-1 images for monitoring of oil spills; (4) the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products; and (5) the structuring of a data base. The Integration of RADARSAT-1 image of the Potiguar Basin of day 21.05.99 with the base map of the Exploration Area of the Polo Region of Guamaré for the identification of the probable sources of the oil spots, was used successfully in the detention of the probable spot of oil detected next to the exit to the submarine emissary in the Exploration Area of the Polo Region of Guamaré. To support the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products, a methodology was developed for the classification of oil spills identified by RADARSAT-1 images. For this, the following algorithms of classification not supervised were tested: K-means, Fuzzy k-means and Isodata. These algorithms are part of the PCI Geomatics software, which was used for the filtering of RADARSAT-1 images. For validation of the results, the oil spills submitted to the unsupervised classification were compared to the results of the Semivariogram Textural Classifier (STC). The mentioned classifier was developed especially for oil spill classification purposes and requires PCI software for the whole processing of RADARSAT-1 images. After all, the results of the classifications were analyzed through Visual Analysis; Calculation of Proportionality of Largeness and Analysis Statistics. Amongst the three algorithms of classifications tested, it was noted that there were no significant alterations in relation to the spills classified with the STC, in all of the analyses taken into consideration. Therefore, considering all the procedures, it has been shown that the described methodology can be successfully applied using the unsupervised classifiers tested, resulting in a decrease of time in the identification and classification processing of oil spills, if compared with the utilization of the STC classifier
Resumo:
Für die Zukunft wird eine Zunahme an Verkehr prognostiziert, gleichzeitig herrscht ein Mangel an Raum und finanziellen Mitteln, um weitere Straßen zu bauen. Daher müssen die vorhandenen Kapazitäten durch eine bessere Verkehrssteuerung sinnvoller genutzt werden, z.B. durch Verkehrsleitsysteme. Dafür werden räumlich aufgelöste, d.h. den Verkehr in seiner flächenhaften Verteilung wiedergebende Daten benötigt, die jedoch fehlen. Bisher konnten Verkehrsdaten nur dort erhoben werden, wo sich örtlich feste Meßeinrichtungen befinden, jedoch können damit die fehlenden Daten nicht erhoben werden. Mit Fernerkundungssystemen ergibt sich die Möglichkeit, diese Daten flächendeckend mit einem Blick von oben zu erfassen. Nach jahrzehntelangen Erfahrungen mit Fernerkundungsmethoden zur Erfassung und Untersuchung der verschiedensten Phänomene auf der Erdoberfläche wird nun diese Methodik im Rahmen eines Pilotprojektes auf den Themenbereich Verkehr angewendet. Seit Ende der 1990er Jahre wurde mit flugzeuggetragenen optischen und Infrarot-Aufnahmesystemen Verkehr beobachtet. Doch bei schlechten Wetterbedingungen und insbesondere bei Bewölkung, sind keine brauchbaren Aufnahmen möglich. Mit einem abbildenden Radarverfahren werden Daten unabhängig von Wetter- und Tageslichtbedingungen oder Bewölkung erhoben. Im Rahmen dieser Arbeit wird untersucht, inwieweit mit Hilfe von flugzeuggetragenem synthetischem Apertur Radar (SAR) Verkehrsdaten aufgenommen, verarbeitet und sinnvoll angewendet werden können. Nicht nur wird die neue Technik der Along-Track Interferometrie (ATI) und die Prozessierung und Verarbeitung der aufgenommenen Verkehrsdaten ausführlich dargelegt, es wird darüberhinaus ein mit dieser Methodik erstellter Datensatz mit einer Verkehrssimulation verglichen und bewertet. Abschließend wird ein Ausblick auf zukünftige Entwicklungen der Radarfernerkundung zur Verkehrsdatenerfassung gegeben.