929 resultados para Switching autoregressive conditional heteroskedasticity
Resumo:
O objetivo desse trabalho é encontrar uma medida dinâmica de liquidez de ações brasileiras, chamada VNET. Foram utilizados dados de alta frequência para criar um modelo capaz de medir o excesso de compras e vendas associadas a um movimento de preços. Ao variar no tempo, o VNET pode ser entendido como a variação da proporção de agentes informados em um modelo de informação assimétrica. Uma vez estimado, ele pode ser utilizado para prever mudanças na liquidez de uma ação. O VNET tem implicações práticas importantes, podendo ser utilizado por operadores como uma medida estocástica para identificar quais seriam os melhores momentos para operar. Gerentes de risco também podem estimar a deterioração de preço esperada ao se liquidar uma posição, sendo possível analisar suas diversas opções, servindo de base para otimização da execução. Na construção do trabalho encontramos as durações de preço de cada ação e as diversas medidas associadas a elas. Com base nos dados observa-se que a profundidade varia com ágio de compra e venda, com o volume negociado, com o numero de negócios, com a duração de preços condicional e com o seu erro de previsão. Os resíduos da regressão de VNET se mostraram bem comportados o que corrobora a hipótese de que o modelo foi bem especificado. Para estimar a curva de reação do mercado, variamos os intervalos de preço usados na definição das durações.
Resumo:
In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.
Resumo:
This paper investigates the hypotheses that the recently established Mexican stock index futures market effectively serves the price discovery function, and that the introduction of futures trading has provoked volatility in the underlying spot market. We test both hypotheses simultaneously with daily data from Mexico in the context of a modified EGARCH model that also incorporates possible cointegration between the futures and spot markets. The evidence supports both hypotheses, suggesting that the futures market in Mexico is a useful price discovery vehicle, although futures trading has also been a source of instability for the spot market. Several managerial implications are derived and discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
In this paper, the authors use an exponential generalized autoregressive conditional heteroscedastic (EGARCH) error-correction model (ECM), that is, EGARCH-ECM, to estimate the pass-through effects of foreign exchange (FX) rates and producers’ prices for 20 U.K. export sectors. The long-run adjustment of export prices to FX rates and producers’ prices is within the range of -1.02% (for the Textiles sector) and -17.22% (for the Meat sector). The contemporaneous pricing-to-market (PTM) coefficient is within the range of -72.84% (for the Fuels sector) and -8.05% (for the Textiles sector). Short-run FX rate pass-through is not complete even after several months. Rolling EGARCH-ECMs show that the short and long-run effects of FX rate and producers’ prices fluctuate substantially as are asymmetry and volatility estimates before equilibrium is achieved.
Resumo:
This empirical study examines the Pricing-To-Market (PTM) behaviour of 20 UK export sectors. Using both Exponential General Autoregressive Conditional Heteroscedasticity (EGARCH) and Threshold GARCH (TGARCH) estimation methods, we find evidence of PTM that is accompanied by strong conditional volatility and weak asymmetry effects. The PTM estimates suggest that when the currency of exporters appreciates in the current period, exporters pass-on between 31% and 94% of the Foreign Exchange (FX) rate increase to importers. However, both export price changes and producers' prices are sluggish, perhaps being driven by coordination failure and menu driven costs, amongst others. Furthermore, export prices contain strong time varying effects which impact on PTM strategy. Exporters do not typically appear to put much more weight on negative news of (say) an FX rate appreciation compared to positive news of an FX rate depreciation. Much depends on the export sector. © 2010 Taylor & Francis.
Resumo:
Mestrado em Contabilidade e Análise Financeira,
Resumo:
En este documento se estima una medida de la incertidumbre inflacionaria. Un modelo de inflación señala incertidumbre cuando los errores de pronóstico son heteroscedásticos. Por medio de la especificación de una ecuación GARCH (Generalized Autoregressive Conditional Heteroscedasticity), para la varianza del término de error de un modelo de inflación, es posible estimar una proxy de incertidumbre inflacionaria. La estimación simultánea del modelo de inflación y de la ecuación GARCH, produce un nuevo modelo de inflación en el cual los errores de pronóstico son homocedásticos. Existe consenso en la literatura económica en que hay una correlación positiva entre incertidumbre inflacionaria y la magnitud de la tasa de inflación, lo cual, como lo señaló Friedman (1977), representa uno de los costos asociados con la persistencia inflacionaria. Esto es porque tal incertidumbre dificulta la toma de decisiones óptimas por parte de los agentes económicos.La evidencia empírica, para el periodo 1954:01-2002:08, apoya la hipótesis de que para el caso de Costa Rica mientras mayor es la inflación mayor es la incertidumbre respecto a esta variable. En los últimos siete años (1997-2002) la incertidumbre presenta la variación media más baja de todo el periodo. Además, se identifica un efecto asimétrico de la inflación sobre la incertidumbre inflacionaria, es decir, la incertidumbre inflacionaria tiende a incrementarse más para el siguiente periodo cuando la inflación pronosticada está por debajo de la inflación actual, que cuando la inflación pronosticada está por arriba de la tasa observada de inflación. Estos resultados tienen una clara implicación para la política monetaria. Para minimizar la dificultad que la inflación causa en la toma óptima de decisiones de los agentes económicos es necesario perseguir no solamente un nivel bajo de inflación sino que también sea estable.AbstractThis paper estimates a measure of inflationary uncertainty. An inflation model signals uncertainty when the forecast errors are heteroskedastic. By the specification of a GARCH (Generalized Autoregressive Conditional Heteroscedasticity) equation, for the variance of the error term of the inflation model, it is possible to estimate a proxy for inflationary uncertainty. By the simultaneous estimation of the inflation model and the GARCH equation, a new inflation model is obtained in which the forecast errors are homocedastic. Most economists agree that there is a positive correlation between inflationary uncertainty and the magnitude of the inflation rate, which, as was pointed out by Friedman (1977), represents one of costs associated with the persistence of inflation. This is because such uncertainty clouds the decision-making process of consumers and investors.The empirical evidence for the period 1954:01-2002:08 confirms that in the case of Costa Rica inflationary uncertainty increases as inflation rises. In the last seven years(1997-2002) the uncertainty present the mean variation most small of the period. In addition, inflation has an asymmetric effect on inflationary uncertainty. That is, when the inflation forecast is below the actual inflation, inflationary uncertainty increases for the next period. The opposite happens when the inflation forecast is above the observed rate of inflation. Besides, the absolute value of the change on uncertainty is greater in the first case than the second. These results have a clear implication for monetary policy. To minimize the disruptions that inflation causes to the economic decision-making process, it is necessary to pursue, not only a low level of inflation, but a stable one as well.
Resumo:
Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.
Resumo:
We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.
Resumo:
Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics