922 resultados para Surfaces and interfaces
Resumo:
To assess the prevalence of tooth wear on buccal/facial and lingual/palatal tooth surfaces and identify related risk factors in a sample of young European adults, aged 18-35 years. Calibrated and trained examiners measured tooth wear, using the basic erosive wear examination (BEWE) on in 3187 patients in seven European countries and assessed the impact of risk factors with a previously validated questionnaire. Each individual was characterized by the highest BEWE score recorded for any scoreable surface. Bivariate analyses examined the proportion of participants who scored 2 or 3 in relation to a range of demographic, dietary and oral care variables. The highest tooth wear BEWE score was 0 for 1368 patients (42.9%), 1 for 883 (27.7%), 2 for 831 (26.1%) and 3 for 105 (3.3%). There were large differences between different countries with the highest levels of tooth wear observed in the UK. Important risk factors for tooth wear included heartburn or acid reflux, repeated vomiting, residence in rural areas, electric tooth brushing and snoring. We found no evidence that waiting after breakfast before tooth brushing has any effect on the degree of tooth wear (p=0.088). Fresh fruit and juice intake was positively associated with tooth wear. In this adult sample 29% had signs of tooth wear making it a common presenting feature in European adults.
Resumo:
The effect of IgG on cytokine production by human mononuclear cells (MNC) was studied. Tumor necrosis factor-alpha (TNF) was determined both by bioassay and by immunoassay. Interleukin-1 (IL1) was measured by a thymocyte costimulator assay, which was shown to be completely inhibitable by polyclonal anti-IL1. Precautions were taken to avoid inadvertent exposure of the studied cells to endotoxin. In a first model, TNF and IL1 production by adherent MNC in IgG-coated cluster plates were determined. IgG induced a strong TNF response, usually leveling off after 6 hr, and was comparable in kinetics and magnitude with an LPS-induced response. The thymocyte co-stimulatory activity response was relatively weak and peaked at 6 hr. In contrast, LPS-induced co-stimulatory activity production steadily increased over 24 hr. In a second model, MNC in suspension cultures containing autologous serum were exposed to IgG for intravenous use (IgG-IV). Cells exposed to IgG-IV produced higher amounts of cytokines than control counterparts and were primed for enhanced production of cytokines upon a second, unrelated stimulus. This implies that the effect of IgG-IV on suspended MNC resembles that of surface-adsorbed IgG and raises the possibility that cytokine release is an integral part of the mechanism of action of infused IgG. Evidence is presented suggesting that both surface IgG and IgG-IV act directly on monocytes, in a Fc-dependent manner.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We calculate the electron exchange coupling for a phosphorus donor pair in silicon perturbed by a J-gate potential and the boundary effects of the silicon host geometry. In addition to the electron-electron exchange interaction we also calculate the contact hyperfine interaction between the donor nucleus and electron as a function of the varying experimental conditions. Donor separation, depth of the P nuclei below the silicon oxide layer and J-gate voltage become decisive factors in determining the strength of both the exchange coupling and hyperfine interaction-both crucial components for qubit operations in the Kane quantum computer. These calculations were performed using an anisotropic effective-mass Hamiltonian approach. The behaviour of the donor exchange coupling as a function of the parameters varied in this work provides relevant information for the experimental design of these devices.
Resumo:
This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.