981 resultados para Surface quality


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a multiscale simulation study was carried out in order to gain in-depth understanding of machining mechanism of nanometric cutting of single crystal copper. This study was focused on the effects of crystal orientation and cutting direction on the attainable machined surface quality. The machining mechanics was analyzed through cutting forces, chip formation morphology, generation and evolution of defects and residual stresses on the machined surface. The simulation results showed that the crystal orientation of the copper material and the cutting direction significantly influenced the deformation mechanism of the workpiece materials during the machining process. Relatively lower cutting forces were experienced while selecting crystal orientation family {1 1 1}. Dislocation movements were found to concentrate in front of the cutting chip while cutting on the (1 1 1) surface along the View the MathML source cutting direction thus, resulting in much smaller damaged layer on the machined surface, compared to other orientations. This crystal orientation and cutting direction therefore recommended for nanometric cutting of single crystal copper in practical applications. A nano-scratching experiment was performed to validate the above findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis considers fastener manufacture by the net forging technique in the warm forging temperature range. The work determines the optimum warm forging and billet cropping temperatures which produce the highest quality forgings. The research also quantified the surface quality of small warm forgings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente a preocupação ambiental está fazendo com que as empresas busquem diminuir os impactos ambientais por elas causados, ao mesmo tempo em que melhoram a qualidade do produto e processos de fabricação. Logo, muitas pesquisas estão sendo desenvolvidas na área de usinagem para se analisar o real dano ao meio ambiente quando usados diferentes métodos de lubri-refrigeração. Este trabalho teve como objetivo analisar a qualidade da peça produzida e o desgaste do ferramental de corte de uma retificadora plana ao se usinar cerâmica de alumina com dois métodos distintos de aplicação de fluido de corte: método convencional com vazão de 458,3 mL/h e o método da mínima quantidade de lubrificação (MQL) com 100 mL/h. A partir dos resultados obtidos pode-se constatar que para os mesmos parâmetros de usinagem a técnica do MQL utilizou uma quantidade muito menor de fluido e garantiu bons resultados de desgaste diametral do rebolo. No entanto, a qualidade da peça foi bem pior para o método do MQL em relação a técnica de refrigeração convencional. Estes resultados mostraram que se utilizando formas alternativas de lubrificação para reduzir o uso do fluido de corte, são possíveis dependendo de quais fatores são mais importantes para o processo que se deseja. Nesse sentido, se o método do MQL fosse adotado pelas empresas dependentes da retificação, certamente iria trazer, de um lado, benefícios quanto a problemas de descarte e reciclagem de fluido de corte, mas por outro lado, levaria a uma menor qualidade superficial das peças.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Payload and high-tech are important characteristics when the goals are aerospace applications. The development of the technologies associated to these applications has interests that transcend national boundaries and are of strategic importance to the nations. Ultra lightweight mirrors, supports and structures for optical systems are important part of this subject. This paper reports the development of SiC substrates, obtained by pressing, to be applied on embedded precision reflective optics. Different SiC granulometries, having YAG as sintering additive, were processed by: ball milling, drying and deagglomeration, sift, uniaxial and isostatic pressing, and, finally, argon atmosphere sintering at 1900°C. Different porosities were obtained according to the amount of organic material added. Into one side of the samples pellets of organic material were introduced to generate voids to reduce the weight of samples as a whole. The substrates were grinding and polished, looking for a SiC surface having low porosity, as porosity is directly related to light scattering that should be avoided on optical surfaces. Laser surface treatments were applied (using or not SiC barbotine) as a method to improve the surface quality. The samples were characterized by optical and laser confocal microscopy, roughness measurements and mechanical tests. The results are very promissory for future applications. © 2012 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)