882 resultados para Surface active agents
Resumo:
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
An oscillating droplet method combined with electromagnetic levitation technique has been applied to determine the surface tensions of liquid nickel sulphur alloys as a function of the temperature and composition. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser, and the influence of magnetic field strength on the surface tension was considered. Furthermore, the applicability of Butler's equation and subregular solution model for the surface was shown to predict the surface tension of the systems containing the surface active elements.
Resumo:
Prevention or suppression of protein aggregation is of great importance in the context of protein storage, transportation and delivery. Traditionally chaperones or other chemically active agents are used to stop or diffuse native protein aggregation. We have used gold nanoparticles to prevent thermal aggregation of alcohol dehydrogenase (ADH), a protein that maintains the alcohol level in the liver and stomach. A light-scattering assay has been used to investigate the effect of gold nanoparticles on thermal aggregation of ADH and the result of our study has been summarized in Fig. 1. The scattered light intensity from the solution containing ADH decreases when 45 nm gold nanoparticles are added prior to heating (thermal denaturation) the solution, which indicates prevention of aggregation. The aggregation of the protein is suppressed to the extent of 96% with picomolar concentration of 45 nm gold nanoparticles while micromolar amounts of other proteins and biological substances are necessary to achieve the same effect. The extent varies with the size and the concentration of the gold NPs for the same protein concentration.
Resumo:
CO2-TPD was used to study the surface basicity of La-Me-O mixed oxides and O-2-TPD, CH4-TPD were employed to study the surface active oxygen species. Comparing the CO2-TPD with O-2-TPD, we can see that the basicity of catalyst is in parallel with the catalystic activity. The stronger basicity is more profitable for the catalyst to adsorb oxygen to form active oxygen species and to activate CH4 by breaking a C-H bond, By comparing the catalytic activity, the results showed that La-Ba-O(La/Ba=7/3) catalyst had the strongest basicity, and it gave the highest CH4 conversion and C-2 selectivity, The results from the pulse reaction showed that the lattice oxygen participated in the OCM reaction without gas oxygen, and it was the selective oxygen species.
Resumo:
Silica nanoparticles (MSNs) with a highly ordered mesoporous structures (103A) with cubic Im3 m have been synthesized using triblock copolymers with high poly(alkylene oxide) (EO) segments in acid media. The produced nanoparticles displayed large specific surface area (approximately 765 cm(2)/g) with an average particles size of 120 nm. The loading efficiency was assessed by incorporating three major antiepileptic active substances via passive loading and it was found to varying from 17 to 25%. The state of the adsorbed active agents was further analyzed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Dissolution studies revealed rapid release profiles within the first 3 h. The viability of 3T3 endothelial cells was not affected in the presence of MSNs indicating negligible cytotoxicity. 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Resumo:
The process of using solar energy to split water to produce hydrogen assisted by an inorganic semiconductor is crucial for solving our energy crisis and environmental problems in the future. However, most semiconductor photocatalysts would not exhibit excellent photocatalytic activity without loading suitable co-catalysts. Generally, the noble metals have been widely applied as co-catalysts, but always agglomerate during the loading process or photocatalytic reaction. Therefore, the utilization efficiency of the noble co-catalysts is still very low on a per metal atom basis if no obvious size effect exists, because heterogeneous catalytic reactions occur on the surface active atoms. Here, for the first time, we have synthesized isolated metal atoms (Pt, Pd, Rh, or Ru) stably by anchoring on TiO2, a model photocatalystic system, by a facile one-step method. The isolated metal atom based photocatalysts show excellent stability for H-2 evolution and can lead to a 6-13-fold increase in photocatalytic activity over the metal clusters loaded on TiO2 by the traditional method. Furthermore, the configurations of isolated atoms as well as the originality of their unusual stability were analyzed by a collaborative work from both experiments and theoretical calculations.
Resumo:
Les liposomes sont des structures sphériques formés par l'auto-assemblage de molécules amphiphiles sous forme d'une bicouche. Cette bicouche sépare le volume intérieur du liposome du milieu extérieur, de la même manière que les membranes cellulaires. Les liposomes sont donc des modèles de membranes cellulaires et sont formulés pour étudier les processus biologiques qui font intervenir la membrane (transport de molécules à travers la membrane, effets des charges en surface, interactions entre la matrice lipidique et d'autres molécules, etc.). Parce qu'ils peuvent encapsuler une solution aqueuse en leur volume intérieur, ils sont aussi utilisés aujourd'hui comme nanovecteurs de principes actifs. Nous avons formulé des liposomes non-phospholipidiques riches en stérol que nous avons appelés stérosomes. Ces stérosomes sont composés d'environ 30 % d'amphiphiles monoalkylés et d'environ 70 % de stérols (cholestérol, Chol, et/ou sulfate de cholestérol, Schol). Quand certaines conditions sont respectées, ces mélanges sont capables de former une phase liquide ordonnée (Lo) pour donner, par extrusion, des vésicules unilamellaires. Certaines de ces nouvelles formulations ont été fonctionnalisées de manière à libérer leur contenu en réponse à un stimulus externe. En incorporant des acides gras dérivés de l’acide palmitique possédant différents pKa, nous avons pu contrôler le pH auquel la libération débute. Un modèle mathématique a été proposé afin de cerner les paramètres régissant leur comportement de libération. En incorporant un amphiphile sensible à la lumière (un dérivé de l’azobenzène), les liposomes formés semblent répondre à une radiation lumineuse. Pour ce système, il serait probablement nécessaire de tracer le diagramme de phase du mélange afin de contrôler la photo-libération de l’agent encapsulé. Nous avons aussi formulé des liposomes contenant un amphiphile cationique (le chlorure de cétylpyridinium). En tant que nanovecteurs, ces stérosomes montrent un potentiel intéressant pour la libération passive ou contrôlée de principes actifs. Pour ces systèmes, nous avons développé un modèle pour déterminer l’orientation des différentes molécules dans la bicouche. La formation de ces nouveaux systèmes a aussi apporté de nouvelles connaissances dans le domaine des interactions détergents-lipides. Aux nombreux effets du cholestérol (Chol) sur les systèmes biologiques, il faut ajouter maintenant que les stérols sont aussi capables de forcer les amphiphiles monoalkylés à former des bicouches. Cette nouvelle propriété peut avoir des répercussions sur notre compréhension du fonctionnement des systèmes biologiques. Enfin, les amphiphiles monoalkylés peuvent interagir avec la membrane et avoir des répercussions importantes sur son fonctionnement. Par exemple, l'effet antibactérien de détergents est supposé être dû à leur insertion dans la membrane. Cette insertion est régie par l'affinité existant entre le détergent et cette dernière. Dans ce cadre, nous avons voulu développer une nouvelle méthode permettant d'étudier ces affinités. Nous avons choisi la spectroscopie Raman exaltée de surface (SERS) pour sa sensibilité. Les hypothèses permettant de déterminer cette constante d’affinité se basent sur l’incapacité du détergent à exalter le signal SERS lorsque le détergent est inséré dans la membrane. Les résultats ont été comparés à ceux obtenus par titration calorimétrique isotherme (ITC). Les résultats ont montré des différences. Ces différences ont été discutées.
Resumo:
Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas 'cell walls'. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas 'cell walls', as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occur-red on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas 'cell walls'. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. (C) 2004 Published by Elsevier Ltd.
Resumo:
B. subtilis under certain types of media and fermentation conditions can produce surfactin, a biosurfactant which belongs to the lipopeptide class. Surfactin has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, antitumoral activity against ascites carcinoma cells, and a hypocholesterolemic activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactin from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactin production. In this study, competitive adsorption of surfactin and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactin to the subphase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactin both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactin were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactin.
Resumo:
The tanning industries are those which transform animal hide or skin into leather. Due to the complexity of the transformation process, greater quantities of chemicals are being used which results in the generation of effluents with residual solids. The chromium in the residual waters generated by tanning tend to be a serious problem to the environment, therefore the recovery of this metal could result in the reduction of manufacturing costs. This metal is usually found in a trivalent form which can be converted into a hexavalent compound under acidic conditions and in the presence of organic matter. The present study was carried out with the objective to recover chromium through an extraction/re-extraction process using micro emulsions. Micro emulsions are transparent and thermodynamically stable system composed of two immiscible liquids, one forming the continuous phase and the other dispersed into micro bubbles, established by an interfacial membrane formed by surface active and co-surface active molecules. The process of recovering the chromium was carried out in two stages. The first, an extraction process, where the chromium was extracted in the micro emulsion phase and the aqueous phase in excess was separated. In the second stage, a concentrated acid was added to the micro emulsion phase rich in chromium in order to obtain a Winsor II system, where the water that formed in the micro emulsion phase separates into a new micro emulsion phase with a higher concentration of chromium, due to the lowering of the hydrophiles as well as the ionisation of the system. During the experimental procedure, a study was initiated with a synthetic solution of chromium sulphate passing onto the effluent. A Morris extractor was used in the extraction process. Tests were carried out according to the plan and the results were analysed by statistical methods in order to optimise the main parameters that influence the process: the total rate of flow (Q), stirring speed (w) and solvent rate (r). The results, after optimization, demonstrated that the best percentuals in relation to the chromium extraction (99 %) were obtained in the following operational conditions: Q= 2,0 l/h, w= 425 rpm and r= 0,375. The re-extraction was carried out at room temperature (28 °C), 40 °C and 50°C using hydrochloric acid (8 and 10 M) and sulphuric acid (8 M) as re-extracting agents. The results obtained demonstrate that the process was efficient enough in relation to the chromium extraction, reaching to re-extraction percentage higher than 95 %.
Resumo:
The present study sought biotensoactive production from soybean oil fry waste using Pseudomonas aeruginosa ATCC 10145 and Pseudomonas aeruginosa isolated from the soil of a petroleum station having undergone gasoline and diesel oil spills. The results of the experiments were analyzed using a complete factorial experimental design, investigating the concentration of soybean oil waste, ammonia sulfate and residual brewery yeast. Assays were performed in 250-mL Erlenmeyer beakers containing 50 mL of production medium, maintained on a rotary shaker at 200 rpm and a temperature of 30±1 °C for a 48-hour fermentation period. Biosurfactant production was monitored through the determination of rhamnose, surface tension and emulsification activity. The Pseudomonas aeruginosa ATCC 10145 strain and isolated Pseudomonas aeruginosa were able to reduce the surface tension of the initial mexlium from 61 mN/m to 32.5 mN/m and 30.0 mN/m as well as produce rhamnose at concentrations of 1.96 and 2.89 g/L with emulsification indices of 96% and 100%, respectively.
Resumo:
Pós-graduação em Química - IQ