886 resultados para Surcharge Loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long undersea debris runout can be facilitated by a boundary layer formed by weak marine sediments under a moving slide mass. Undrained loading of such offshore sediment results in a profound drop of basal shear resistance, compared to subaerial shear resistance, enabling long undersea runout. Thus large long-runout submarine landslides are not truly enigmatic (Voight and Elsworth 1992, 1997), but are understandable in terms of conventional geotechnical principles. A corollary is that remoulded undrained strength, and not friction angle, should be used for basal resistance in numerical simulations. This hypothesis is testable via drilling and examining the structure at the soles of undersea debris avalanches for indications of incorporation of sheared marine sediments, by tests of soil properties, and by simulations. Such considerations of emplacement process are an aim of ongoing research in the Lesser Antilles (Caribbean Sea), where multiple offshore debris avalanche and dome-collapse debris deposits have been identified since 1999 on swath bathymetric surveys collected in five oceanographic cruises. This paper reviews the prehistoric and historic collapses that have occurred offshore of Antilles arc islands and summarizes ongoing research on emplacement processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Lower limb function in hurdling is patently asymmetrical. The lead limb undertakes the preparatory and landing steps while the trail limb contends with the hurdle and recovery steps. Discrete loading profiles of these steps will reflect the asymmetrical function and may provide useful insight into injury mechanisms. A pilot study was undertaken to determine the loading profiles of the hurdle, landing and recovery steps of elite male hurdlers. Equivalent data for steps between hurdles, where the running action is more symmetrical, were used for the purpose of comparison, simultaneously minimising the confounding effect of speed. Methodology: In-shoe pressures were recorded (FScan, 200 Hz) for four elite male hurdlers while they completed a routine hurdle drill at a self-selected fast but sub-race speed. The drill comprised of three consecutive hurdles. Data for the hurdle, landing and recovery steps of the first and second hurdles, along with data for the running steps between hurdles 1 and 2, and 2 and 3, were used for the purpose of analysis. Peak pressures within 1cm2 masks were determined for the hallux, first, central and fifth metatarsals (T1, M1, M2–4 and M5 respectively). Peak pressure (kPa) and loading duration (ms) for the hurdle, landing and recovery steps are reported as a percentage of the respective limb-matched values for between-hurdle steps. Results/discussion: For between-hurdle steps, T1, M1 and M2–4 peak pressures were 312/357, 356/306 and 362/368 kPa, lead/trail limbs respectively. For the hurdle, landing and recovery steps, pressures at T1 and M1 increased. For T1 the increases were in the order of 17%, 36% and 8% (hurdle, landing and recovery steps, respectively) while the corresponding increases at M1 were 7%, 54% and 20%. Pressures at M2–4 were similar for all steps, while M5 loaded erratically. For the between-hurdle steps, the loading durations at T1, M1 and M2–4, were 160/162, 170/142 and 190/191 ms, respectively. For the landing step, loading duration decreased for T1, M1and M2–4 (−8%, −19% and −18%, respectively). In the hurdle step, loading duration decreased for the metatarsals but not for T1. Conclusions: The hurdling action leads to regional pressure increases that act for shorter durations in comparison to the between-hurdle running steps. These changes are most notable at the first metatarsal, a common site of foot injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile/tower cranes are the most essential forms of construction plant in use in the construction industry but are also the subject of several safety issues. Of these, blind lifting has been found to be one of the most hazardous of crane operations. To improve the situation, a real-time monitoring system that integrates the use of a Global Positioning System (GPS) and Radio Frequency Identification (RFID) is developed. This system aims to identify unauthorized work or entrance of personnel within a pre-defined risk zone by obtaining positioning data of both site workers and the crane. The system alerts to the presence of unauthorized workers within a risk zone——currently defined as 3m from the crane. When this happens, the system suspends the power of the crane and a warning signal is generated to the safety management team. In this way the system assists the safety management team to manage the safety of hundreds of workers simultaneously. An onsite trial with debriefing interviews is presented to illustrate and validate the system in use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achilles tendinopathy is a common disorder involving physically active and sedentary individuals alike. Although the processes underlying its development are poorly understood, tendinopathy is widely regarded as an ‘overuse’ injury in which the tendon fails to adapt to prevalent loading conditions. Paradoxically, there is emerging evidence that heavy eccentric loading of the Achilles tendon may be an effective conservative approach for treatment of tendinopathy, with success rates of 60–80% reported. Interestingly, loading exercises involving other forms of muscle action, such as concentric activation, have been shown to be less effective treatment options. However, little is known about the acute response of tendon to exercise at present, and there are few plausible explanatory mechanisms for the observed beneficial effects of eccentric exercise, as opposed to other forms of strain stimuli. This paper presents the findings from a series of experiments undertaken to evaluate the effect of various strain stimuli on the time-dependent response of human Achilles tendon in vivo. It was shown for the first time, that heavy resistive ankle plantarflexion/ dorsiflexion exercises induced an immediate and significant decrease in Achilles tendon thickness (~15%). While thickness returned to pre-exercise levels within 24 hours, the recovery was exponential, with primary recovery occurring in less than 6 hours post-exercise. We proposed that such a diametral strain response with tensile loading reflects collagen realignment, Poison’s effects and radial extrusion of water from the tendon core. With unloading, the recovery of tendon dimensions likely reflects the re-diffusion of water via osmotic and/or inflammatory driven processes. Interestingly, prolonged walking was found to induce a similar diametral strain response. In subsequent studies, we demonstrated that eccentric exercise resulted in a greater reduction (-21%) in Achilles tendon thickness than isolated concentric exercise alone (-5%), despite a similar loading impulse. These novel findings, coupled with observations of a reduced diametral strain response with tendon pathology, highlight the importance of fluid movement to tendon function, nutrition and health. They also provide new insights into potential mechanisms underlying Achilles tendinopathy that impact rehabilitation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate the reliability and validity of five squat-based loading tests that are clinically appropriate for jumper's knee. The loading tests were step up, double leg squat, double leg squat on a 25-degree decline (decline squat), single leg decline squat, and decline hop. Design. Cross-sectional controlled cohort. Subjects without knee pain comprised controls, those with extensor tendon pain comprised the jumper's knee group. Setting. Institutional athlete study group in Australia Participants. Fifty-six elite adolescent basketball players participated in this study, thirteen comprised the jumper's knee group, fifteen athletes formed a control group. Intervention. Each subject performed each loading test for baseline and reliability data on the first testing day. Subjects then performed three days of intensive (6 h daily) basketball training, after which each loading test was reexamined. Main outcome measures. Eleven point interval scale for pain. Results. The tests that best detected a change in pain due to intensive workload were the single leg decline squat and single leg decline hop. This study found that decline tests have better discriminative ability than the standard squat to detect change in jumper's knee pain due to intensive training. The typical error for these tests ranged from 0.3 to 0.5, however, caution should be exercised in the interpretation of these reliability figures due to relatively low scores. Conclusions. The single leg decline squat is recommended in the physical assessment of adolescent jumper's knee. The decline squat was selected as the best clinical test over the decline hop because it was easier to standardise performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a study of the theoretical and experimental behaviour of box-columns of varying b/t ratios under loadings of axial compression and torsion and their combinations. Details of the testing rigs and the testing methods, the results obtained such as the load-deflection curves and the interaction diagrams, and experimental observations regarding the behaviour of box-models and the types of local plastic mechanisms associated with each type of loading are presented. A simplified rigid-plastic analysis is carried out to study the collapse behaviour of box-columns under these loadings, based on the observed plastic mechanisms, and the results are compared with those of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of an application of the finite strip method to the elastic buckling analysis of thin-walled structures with various boundary conditions and subjected to single or combined loadings of longitudinal compression, transverse compression, bending and shear are presented. The presence of shear loading is accounted for by modifying the displacement functions which are commonly used in cases when shear is absent. A program based on the finite strip method was used to obtain the elastic buckling stress, buckling plot and buckling mode of thin-walled structures and some of these results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .