961 resultados para Superoxide-dismutase Activity
Resumo:
Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.
Resumo:
Hypoxia is one of the major causes of damage to the fetal and neonatal brain and cardiac functions. in earlier studies we have reported the brain damage caused by hypoxia and resusciation with oxygen and epinephrine and have found that glucose treatment to hypoxic rats and hypoxic rats treated with oxygen shows a reversal of brain damage. during this study the findings may have clinical significance in the proper management of heart and brain functions.
Resumo:
In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether or-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O-2(-)) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd2+ ions (2 mg Kg(-1)). To determine the potential therapeutic effect of Vitamin E, a group of Cd2+-treated rats received a drinking solution of or-tocopherol (40 mg l(-1)) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.
Resumo:
Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells. In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping. However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.
Resumo:
Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and motor cortex. Mutations to Cu,Zn superoxide dismutase (SOD) linked with familial ALS are reported to increase hydroxyl radical adduct formation from hydrogen peroxide as measured by spin trapping with 5,5′-dimethyl-1-pyrrolline N-oxide (DMPO). In the present study, we have used oxygen-17-enriched water and H2O2 to reinvestigate the mechanism of DMPO/⋅OH formation from the SOD and SOD mutants. The relative ratios of DMPO/⋅17OH and DMPO/⋅16OH formed in the Fenton reaction were 90% and 10%, respectively, reflecting the ratios of H217O2 to H216O2. The reaction of the WT SOD with H217O2 in bicarbonate/CO2 buffer yielded 63% DMPO/⋅17OH and 37% DMPO/⋅16OH. Similar results were obtained from the reaction between familial ALS SOD mutants and H217O2: DMPO/⋅17OH (64%); DMPO/⋅16OH (36%) from A4V and DMPO/⋅17OH (62%); and DMPO/⋅16OH (38%) from G93A. These results were confirmed further by using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin trap, a phosphorylated analog of DMPO. Contrary to earlier reports, the present results indicate that a significant fraction of DMPO/⋅OH formed during the reaction of SOD and familial ALS SOD mutants with H2O2 is derived from the incorporation of oxygen from water due to oxidation of DMPO to DMPO/⋅OH presumably via DMPO radical cation. No differences were detected between WT and mutant SODs, neither in the concentration of DMPO/⋅OH or DEPMPO/⋅OH formed nor in the relative incorporation of oxygen from H2O2 or water.
Resumo:
Copyright © 2015 Elsevier Ltd. All rights reserved. This research project was funded by NHS Grampian R&D (project number RG05/019).
Resumo:
Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515–518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.
Resumo:
Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.
Resumo:
The mechanism by which mutations in the superoxide dismutase (SOD1) gene cause motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS) is unknown. Recent reports that neuronal death in SOD1-familial ALS is apoptotic have not documented activation of cell death genes. We present evidence that the enzyme caspase-1 is activated in neurons expressing mutant SOD1 protein. Proteolytic processing characteristic of caspase-1 activation is seen both in spinal cords of transgenic ALS mice and neurally differentiated neuroblastoma (line N2a) cells with SOD1 mutations. This activation of caspase-1 is enhanced by oxidative challenge (xanthine/xanthine oxidase), which triggers cleavage and secretion of the interleukin 1β converting enzyme substrate, pro-interleukin 1β, and induces apoptosis. This N2a culture system should be an instructive in vitro model for further investigation of the proapoptotic properties of mutant SOD1.