1000 resultados para Supernovae: individual: SN 2007gr
Resumo:
We present photospheric-phase observations of LSQ12gdj, a slowly declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23 800 Å) light curve out to 45 d past B-band maximum light. We estimate that LSQ12gdj produced 0.96 ± 0.07 M· of 56Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27 per cent of the flux at the earliest observed phases, and 17 per cent at maximum light, is emitted bluewards of 3300 Å. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 Å and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, ~10 per cent of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013 cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.
Resumo:
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (
Resumo:
We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z P1 = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with Mu = -22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 days to the extraordinary peak luminosity of 4.1 × 1044 erg s-1 (M bol = -22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of ~6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of ~11, 000 km s-1 and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (gsim 5 × 1015 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of ~15 M ⊙ yr-1, and is fairly massive (~2 × 1010 M ⊙), with a stellar population age of ~108 yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.
Resumo:
We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultraluminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of M UV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically confirmed SNe known to date. The spectrum exhibits broad absorption features typical of previous ULSNe (e.g., C II, Si III), and strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]λ3727 emission line at the same redshift. The equivalent widths of the Fe II λ2600 and Mg II λ2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of τ* ≈ 15-45 Myr and a stellar mass of M * ≈ (1.1-2.6) × 109 M ⊙ (for Z = 0.05-1 Z ⊙). The star formation rate inferred from the UV continuum and [O II]λ3727 emission line is ≈10 M ⊙ yr-1, higher than in previous ULSN hosts. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the ISM in distant galaxies. The depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z ~ 1-2); the future combination of LSST and 30 m class telescopes promises to extend this technique to z ~ 4.
Resumo:
Superluminous supernovae (SLSNe) of Type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best-studied superluminous explosions that has a broad and slowly fading light curve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 d (rest frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the light curve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric light curve from -53 to +399 d (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense circumstellar material (CSM) produces a good fit to the data although this requires a very large mass (˜13 M⊙) of hydrogen-free CSM. The host galaxy is a compact dwarf (physical size ˜1.9 kpc) and with Mg = -19.33 ± 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low-mass system (2.8 × 108 M⊙) with a star formation rate (5.0 M⊙ yr-1), which implies a very high specific star formation rate (17.9 Gyr-1). The remarkably strong nebular emission provide detections of the [O III] λ4363 and [O II] λλ7320, 7330auroral lines and an accurate oxygen abundance of 12 + log (O/H) = 8.05 ± 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar SNe.
Resumo:
We report the discovery and characterization of a deeply eclipsing AM CVn-system, Gaia14aae (=ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al.) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et al.; Tonry et al.; Magnier et al.) and ASAS-SN data. Spectroscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines, consistent with an accreting double-degenerate classification. We use follow-up photometry to constrain the orbital parameters of the system. We find an orbital period of 49.71 min, which places Gaia14aae at the long period extremum of the outbursting AM CVn period distribution. Gaia14aae is dominated by the light from its accreting white dwarf (WD). Assuming an orbital inclination of 90° for the binary system, the contact phases of the WD lead to lower limits of 0.78 and 0.015 M⊙ on the masses of the accretor and donor, respectively, and a lower limit on the mass ratio of 0.019. Gaia14aae is only the third eclipsing AM CVn star known, and the first in which the WD is totally eclipsed. Using a helium WD model, we estimate the accretor's effective temperature to be 12 900 ± 200 K. The three outburst events occurred within four months of each other, while no other outburst activity is seen in the previous 8 yr of Catalina Real-time Transient Survey (CRTS; Drake et al.), Pan-STARRS-1 and ASAS-SN data. This suggests that these events might be rebrightenings of the first outburst rather than individual events.
Resumo:
We present our findings on a supernova (SN) impostor, SNHunt248, based on optical and near-IR data spanning ~15 yr before discovery, to ~1 yr post-discovery. The light curve displays three distinct peaks, the brightest of which is at MR ~ −15.0 mag. The post-discovery evolution is consistent with the ejecta from the outburst interacting with two distinct regions of circumstellar material. The 0.5–2.2 μm spectral energy distribution at −740 d is well-matched by a single 6700 K blackbody with log (L/L⊙) ~ 6.1. This temperature and luminosity support previous suggestions of a yellow hypergiant progenitor; however, we find it to be brighter than the brightest and most massive Galactic late-F to early-G spectral type hypergiants. Overall the historical light curve displays variability of up to ~ ± 1 mag. At current epochs (~1 yr post-outburst), the absolute magnitude (MR ~ − 9 mag) is just below the faintest observed historical absolute magnitude ~10 yr before discovery.
Resumo:
iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M⊙, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.
Resumo:
We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to He ii, N iii, and C iii, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SN IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe IIP of a given progenitor mass would imply a progenitor star metallicity as low as 0.1 Z⊙. LSQ13fn highlights the diversity of SNe II and the many competing physical effects that come into play towards the final stages of massive star evolution immediately preceding core-collapse.
Resumo:
As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course.
Resumo:
Cao et al. reported a possible progenitor detection for the Type Ib supernovae iPTF13bvn for the first time. We find that the progenitor is in fact brighter than the magnitudes previously reported by approximately 0.7-0.2 mag with a larger error in the bluer filters. We compare our new magnitudes to our large set of binary evolution models and find that many binary models with initial masses in the range of 10-20M(circle dot) match this new photometry and other constraints suggested from analysing the supernova. In addition, these lower mass stars retain more helium at the end of the model evolution indicating that they are likely to be observed as Type Ib supernovae rather than their more massive, Wolf-Rayet counter parts. We are able to rule out typical Wolf-Rayet models as the progenitor because their ejecta masses are too high and they do not fit the observed SED unless they have a massive companion which is the observed source at the supernova location. Therefore only late-time observations of the location will truly confirm if the progenitor was a helium giant and not a Wolf-Rayet star.
Resumo:
We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M bol ~= -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (MB ≈ -18 mag, diameter
Resumo:
Context. The detection and measurement of gamma-ray lines from the decaychain of 56Ni provides unique information about the explosionin supernovae. SN2014J at 3.3 Mpc is a sufficiently-nearby supernova oftype Ia so that such measurements have been feasible with the gamma-rayspectrometer SPI on ESA's INTEGRAL gamma-ray observatory.
Aims:The 56Ni freshly produced in the supernova is understood topower the optical light curve, because it emits gamma rays upon itsradioactive decay first to 56Co and then to 56Fe.Gamma-ray lines from 56Co decay are expected to becomedirectly visible through the white dwarf material several weeks afterthe explosion, as they progressively penetrate the overlying material ofthe supernova envelope, which is diluted as it expands. The lines areexpected to be Doppler-shifted or broadened from the kinematics of the56Ni ejecta. We aim to exploit high-resolution gamma-rayspectroscopy with the SPI spectrometer on INTEGRAL toward constrainingthe 56Ni distribution and kinematics in this supernova.
Methods: We use the observations with the SPI spectrometer onINTEGRAL, together with an improved instrumental background method.
Results: We detect the two main lines from 56Co decay at847 and 1238 keV, which are significantly Doppler-broadened, and atintensities (3.65 ± 1.21) × 10-4 and (2.27± 0.69) × 10-4 ph cm-2s-1, respectively, at their brightness maximum. We measuretheir rise toward a maximum after about 60-100 days and a declinethereafter. The intensity ratio of the two lines is found to beconsistent with expectations from 56Co decay (0.62 ±0.28 at brightness maximum, the expected ratio is 0.68). We find thatthe broad lines seen in the late, gamma-ray transparent phase are notrepresentative of the early gamma-ray emission, and notice instead thatthe emission spectrum is complex and irregular until the supernova isfully transparent to gamma rays, with progressive uncovering of the bulkof 56Ni. We infer that the explosion morphology is notspherically symmetric, both in the distribution of 56Ni andin the unburnt material which occults the 56Co emission.After we compare light curves from different plausible models, theresulting 56Ni mass is determined to be 0.49 ± 0.09M⊙.
Resumo:
We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.
Resumo:
Photometric and spectral evolution of the Type Ic supernova SN 2007ru until around 210 days after maximum are presented. The spectra show broad spectral features due to very high expansion velocity, normally seen in hypernovae. The photospheric velocity is higher than other normal Type Ic supernovae (SNe Ic). It is lower than SN 1998bw at similar to 8 days after the explosion, but is comparable at later epochs. The light curve (LC) evolution of SN 2007ru indicates a fast rise time of 8 +/- 3 days to B-band maximum and postmaximum decline more rapid than other broad-line SNe Ic. With an absolute V magnitude of -19.06, SN 2007ru is comparable in brightness with SN 1998bw and lies at the brighter end of the observed SNe Ic. The ejected mass of Ni-56 is estimated to be similar to 0.4 M-circle dot. The fast rise and decline of the LC and the high expansion velocity suggest that SN 2007ru is an explosion with a high kinetic energy/ejecta mass ratio (E-K/M-ej). This adds to the diversity of SNe Ic. Although the early phase spectra are most similar to those of broad-line SN 2003jd, the [O I] line profile in the nebular spectrum of SN 2007ru shows the singly peaked profile, in contrast to the doubly peaked profile in SN 2003jd. The singly peaked profile, together with the high luminosity and the high expansion velocity, may suggest that SN 2007ru could be an aspherical explosion viewed from the polar direction. Estimated oxygen abundance 12 + log(O/H) of similar to 8.8 indicates that SN 2007ru occurred in a region with nearly solar metallicity.