975 resultados para Supercondutores de acoplamento forte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho tratou-se do estudo da Reação de Acoplamento de Eschenmoser e da redução dos sistemas β-enaminocarbonílicos derivados da mesma com sua aplicação da síntese de alcalóides com atividade biológica. Estudou-se condições de formação de compostos β-enaminocarbonílicos trissubstituídos e tetrassubstituídos, secundários e terciários. Métodos de redução via hidreto ou através de hidrogenação catalítica foram estudadas neste trabalho. O efeito do tamanho do anel (5 e 6 membros) na Reação de Acoplamento de Eschenmoser foi estudado ajudando no esclarecimento do mecanismo da mesma. A metodologia desenvolvida foi aplicada na síntese dos alcalóides Noralosedamina e Fenidato de Metila.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesquisa está contextualizada no cenário nacional atual: o Brasil passa por um momento singular que culminará em dois eventos esportivos de repercussão mundial: a Copa do Mundo de Futebol em 2014 e as Olimpíadas em 2016. Estes eventos geram impactos nas mais diversas áreas, inclusive na indústria de fitness que, em sua expansão, aproveita a visibilidade gerada por tais acontecimentos. Tendo isto em vista, o objetivo desta pesquisa foi analisar modelos alternativos de atuação no setor de fitness de maneira a contribuir para sua expansão. O modelo alternativo selecionado foi o CrossFit, cujo crescimento internacional o posiciona como a opção de fitness não convencional de maior expressão, ainda que pouco conhecido no Brasil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jornal da Globo News, apresentado por Leilane Neubarth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A greve de caminhoneiros, que já atinge 12 estados, começa a impactar o abastecimento nas principais cidades do país, alcançando forte repercussão nas redes sociais. Os protestos, iniciados no fim de semana, provocam também congestionamentos nas rodovias e prejuízos à exportação. As reivindicações dos caminhoneiros, no entanto, encontram respaldo de parte dos usuários das redes, sobretudo o aumento nos preços dos combustíveis. As hashtags mais usadas são #apoiocaminhoneiros e #caminhoneiros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Badminton assume-se como um jogo de confrontação directa, muito dinâmico e complexo, considerado por muitos como o desporto de raquetes mais rápido do mundo. Nesta modalidade, as acções dos jogadores são executadas de forma balística constantemente e onde as jogadas se desenrolam a alta velocidade, obrigando os jogadores a realizarem constantes e rápidos ajustes durante o jogo. Neste contexto de incerteza e constrangimentos constantes, as inúmeras tomadas de decisão dos jogadores acontecem tipicamente sobre uma enorme e constante pressão temporal, durante praticamente todo o jogo. Assim, o presente estudo pretende ser mais um contributo importante para a compreensão dos processos da tomada de decisão no Badminton, segundo uma perspectiva englobada na teoria da psicologia ecológica do desporto, alicerçada na percepção directa, nos sistemas dinâmicos, nos constrangimentos e no processo da tomada de decisão. Pretendeu-se neste estudo analisar o processo da dinâmica decisional do Badminton, mais especificamente, o acoplamento serviço-recepção nos jogadores de singulares homens de elite mundial, através da detecção da estabilidade de padrões de comportamento nas acções dos jogadores ao longo dos jogos. Para a elaboração do estudo recorreu-se à metodologia observacional, onde foi criado e utilizado um instrumento de observação de formato de campo com sistema de categorias, validado através de um questionário aplicado a um grupo de treinadores peritos na modalidade. Posteriormente, efectuou-se a exploração e interpretação dos dados mediante a utilização da análise descritiva e sequencial com transições, de forma prospectiva e retrospectiva. Os resultados do estudo permitiram concluir que, (1); existem padrões de acção dos jogadores quer no serviço, quer na recepção do serviço; (2) A realização do serviço e a recepção do serviço estão associados a zonas específicas do campo; (3) O resultado final do jogo está associado à eficácia dos batimentos na fase de desenvolvimento das jogadas; (4) Os jogadores vencedores dos jogos observados utilizaram uma maior variação nos serviços, nas recepções e nos tipos de batimento no decorrer das jogadas; (5) Os jogadores que foram vencidos nos jogos observados utilizaram uma menor variação nos serviços, nas recepções e nos batimentos durante as jogadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the development of new microwaves structures, filters and high gain antenna, through the cascading of frequency selective surfaces, which uses fractals Dürer and Minkowski patches as elements, addition of an element obtained from the combination of the other two simple the cross dipole and the square spiral. Frequency selective surfaces (FSS) includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. In this work, we present results for simulated and measured transmission characteristics of cascaded structures (multilayer), aiming to investigate the behavior of the operation in terms of bandwidth, one of the major problems presented by frequency selective surfaces. Comparisons are made with simulated results, obtained using commercial software such as Ansoft DesignerTM v3 and measured results in the laboratory. Finally, some suggestions are presented for future works on this subject

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigated the magnetic properties of a monocrystalline Fe thin film and of Fe(80 Å)/Cr(t)/Fe(80 Å) tri-layers, with the nonmagnetic metallic Cr spacer layer thickness varying between 9 Å < t < 40 Å. The samples were deposited by the DC Sputtering on Magnesium Oxide (MgO) substrates, with (100) crystal orientation. For this investigation, experimental magneto-optical Kerr effect (MOKE) magnetometry and ferromagnetic resonance (FMR) techniques were employeed. In this case, these techniques allowed us to study the static and dynamical magnetization properties of our tri-layers. The experimental results were interpreted based on the phenomenological model that takes into account the relevant energy terms to the magnetic free energy to describe the system behavior. In the case of the monocrystalline Fe film, we performed an analytical discussion on the magnetization curves and developed a numerical simulation based on the Stoner-Wohlfarth model, that enables the numerical adjustment of the experimental magnetization curves and obtainment of the anisotropy field values. On the other hand, for the tri-layers, we analyzed the existence of bilinear and biquadratic couplings between the magnetizations of adjacent ferromagnetic layers from measurements of magnetization curves. With the FMR fields and line width angular dependencies, information on the anisotropy in three layers was obtained and the effects of different magnetic relaxation mechanisms were evidenced. It was also possible to observe the dependence of the epitaxy of the multilayers with growth and sputtering parameters. Additionally it was developed the technique of AC magnetic susceptibility in order to obtain further information during the investigation of magnetic thin films

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells