975 resultados para Sugar cane spirit - Brazil
Resumo:
It was evaluated the energetic efficiency and operational parameters of a windrowing and prismatic baling, both from CASE NEW HOLLAND® operations in sugarcane vegetal residues (green leaves, dry leaves and tops) picked mechanically in green cane. The area belongs to COSTA PINTO MILL (COSAN® Group) which was harvested mechanically by combines in the State of Sao Paulo, Brazil. The geographic location of the area is: Latitude 22°40'30S, Longitude 47°36'38W and Altitude of 605m. The variety was RB 82-5336, planted in 1.40m row spacing, with 78t.ha-1 yield. The vegetal residues analysis obtained 69.93% of leaves, 21.44% of stalks fractions, 2.27% of tops and 6.36% of total strange matter. The vegetal residues values were: gross heat of 18.43MJ.kg-1, low heat of 17.00MJ.kg'1 and useful heat of 12.94MJ.kg-1. The vegetal residues average energetic potential was 342.48GJ.ha-1. The treatments were simple, double and triple windrowing. The use of the rake and prismatic baler to pick up the residues was viable. The simple windrowing treatment presented the best results: effective capacity of 83.06t.ha-1, fuel consumption of 0.18L.t -1 and 99.95% of positive energetic efficiency. The bales obtained in the treatment of triple windrowing presented the largest specific mass average of 221.11kg.m-3. The soil amount in the bales increased with successive windrowing. The baling operation in the triple windrowing treatment obtained better results, presenting the effective capacities of 20.29t.h -1 and 1.45ha.h-1 and fuel consumption of for baled in 1.37L.t-1. The high total energetic efficiency of 99.53% indicates that is technically viable the withdrawal of the vegetal residues.
Resumo:
In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.
Resumo:
Brazil produced in 2002/03 season 317.87×106tons of sugar cane stalks and 36.88×106tons of vegetal residues (green leaves, dry leaves and tops) in a planted area of 4.61×106 hectares (ha). These residues have a useful heat of 3,613.14Mcal.t-1. Currently most of this biomass is burned as a pre-harvest practice. The doubt persists in the system type that it must be adopted to pick up, load, transport and unload this biomass at the sugar mill boilers. This study analyzed 22 variables related to operational costs and physical characteristics of these residues in a field situation using a JOHN DEERE® 6850 forage harvester with two different treatments: T1 and T2 (two types of rakes) with 6 repetitions each one. The geographic location of the studied area that belongs to COSTA PINTO MILL (COSAN® Group) is: Latitude 22°40'30S and Longitude 47°36'38W. The adopted methodology was proposed by Ripoli et al. (2002). The obtained results at a 5% level of significance showed that both treatments did not differed significantly between them. Some of the results were, where EBP stands for Oil Equivalent Barrel: Windrowing (T1=US$0.17.EBP-1 and US$9.59.ha-1, T2=US$0.08.EBP-1 and US$4.27.ha-1); Pick up (T1=US$1.31.EBP-1 and US$44.29.ha-1, T2 =US$1.37.EBP-1 and US$48.36.ha-1); Transportation (T1=US$1.27.EBP-1 and US$14,30.ha -1, T2=US$1.33.EBP-1 and US$14,80.ha -1), Unloading at the sugar mill (T1=US$0.30.EBP-1 and US$3.39.ha-1, T2=US$0.32.EBP-1 and US$3.51.ha-1); Total (T1=US$3.05.EBP-1 and US$71.57.ha-1, T2=US$3.10.EBP-1 and US$70.94.ha-1). Confronting the obtained data with the ones in the bibliography, this system revealed itself more expensive than the baling system or the integral harvest system using combines.
Resumo:
The objective of this study was to analyze the sugar cane vegetal residues collection, as well as determining its energetic potential, using a rake and cylindrical baler, both from NEW HOLLAND® under two different windrowing process (simple and double). The field tests were carried out in an area that belongs to COSTA PINTO MILL (COSAN® Group) in the city of Piracicaba, Sao Paulo State, Brazil. The geographic location of the area is: Latitude 22°4030'S, Longitude 47°3633'W and altitude of 605m. From the trash analysis, before the baling, the following average results were obtained: 69.93% of leaves; 2.27% of stalks fractions; 21.44% of tops and 6.36% of total strange matter. The estimated residues yield was 27.01 tons.ha -1 with a gross heat of 18.43 MJ.kg-1, low heat of 17.01 MJ.kg-1, useful heat of 13.32 MJ.kg-1, average moisture of 20.76% and an energetic potential of 494,875.09 MJ.ha-1. In the windrowing operations (simple and double) the averages of the 5 out of 13 analyzed variable presented differences between them in a 1% level of significance in the Tukey Test. The averages comparison of the results for bale's specific mass and the effective capacities (ton.h-1) e (ha.h-1) had been significant at a 5% level in the Tukey Test. The comparisons of the averages for the results had been significant to 1% level. The strange matter averages of the bales did not differed between them.
Resumo:
The central and western parts of the State of São Paulo are well-known for vast sugar cane plantations, which during the harvest time are traditionally burnt about 12 hours before manual cutting. This procedure causes the release of large quantities of aerosols and a variety of gases, which can be observed by IPMet's radars, located in Bauru and Presidente Prudente, on days with no or little rain. Depending on the distance of these plumes from the radar, they can be detected up to 5 km amsl or more, and are subsequently being transported by winds to other regions. During the dry winter season of 2008, such plumes, attributed to cane fires, were frequently observed by IPMet's radars and documented in terms of radar reflectivity, time and location during the period 10 th - 21 st July 2008. At the same time, IPEN's Elastic Backscatter Lidar in São Paulo observed layers of aerosols of variable strength and heights above the city. The most significant days, viz. 14 and 15 July 2008 had been selected for calculating backward, as well as forward trajectories, deploying the European Flextra 3.3 Trajectory Model, which was initiated with ECMWF historic data with a 0,25 o×0,25 o grid spacing. The results presented here show an excellent match between the radar-detected sources of the plumes on 11 th July 2008 in the central parts of the State and the observations by IPEN's Lidar over Metropolitan São Paulo on 14 th July 2008, both in terms of forward and backward trajectories, as well as their heights, with a transport duration of approximately 70 hours under the prevailing meteorological conditions. © Sociedad Española de Óptica.
Resumo:
Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO 2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol. © 2011 Ceramic Society of Japan.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, especially the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current milling process; for example to reduce final bagasse moisture. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse can be represented by critical state behaviour similar to that of sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, commercial software does not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. In particular, the prediction of volume change during shearing of normally consolidated final bagasse is addressed.
Resumo:
Processing of juice expressed from green sugar cane containing all the trash (i.e., tops and leaves, the nonstalk component) of the sugar cane plant during sugar manufacture has been reported to lead to poor clarified juice (CJ) quality. Studies of different liming techniques have been conducted to identify which liming technique gives the best clarification performance from juice expressed from green cane containing half of all trash extracted (GE). Results have shown that lime saccharate addition to juice at 76 °C either continuous or batchwise gives satisfactory settling rates of calcium phosphate flocs(50−70 cm/min) and CJ with low turbidity and minimal amounts of mineral constituents. Surprisingly, the addition of phosphoric acid (≤300 mg/kg as P2O5), prior to liming to reduce juice turbidity (≤80%), increased the Mg (≤101%) and Si(≤148%) contents particularly for clarified GE juices. The increase was not proportional with increasing phosphoric acid dose. The nature of the flocs formed, including the zeta potential of the particles by the different liming techniques, has been used to account for the differences in clarification performance. Differences between the qualities of the CJ obtained with GE juice and that of burnt cane juices with all trash extracted (BE) have been discussed to provide further insights into GE processing.
Resumo:
It is accepted that the efficiency of sugar cane clarification is closely linked with sugar juice composition (including suspended or insoluble impurities), the inorganic phosphate content, the liming condition and type, and the interactions between the juice components. These interactions are not well understood, particularly those between calcium, phosphate, and sucrose in sugar cane juice. Studies have been conducted on calcium oxide (CaO)/phosphate/sucrose systems in both synthetic and factory juices to provide further information on the defecation process (i.e., simple liming to effect impurity removal) and to identify an effective clarification process that would result in reduced scaling of sugar factory evaporators, pans, and centrifugals. Results have shown that a two-stage process involving the addition of lime saccharate to a set juice pH followed by the addition of sodium hydroxide to a final juice pH or a similar two-stage process where the order of addition of the alkalis is reversed prior to clarification reduces the impurity loading of the clarified juice compared to that of the clarified juice obtained by the conventional defecation process. The treatment process showed reductions in CaO (27% to 50%) and MgO (up to 20%) in clarified juices with no apparent loss in juice clarity or increase in residence time of the mud particles compared to those in the conventional process. There was also a reduction in the SiO2 content. However, the disadvantage of this process is the significant increase in the Na2O content.