988 resultados para Subunit gene
Resumo:
Transposable elements are major components of plant genomes and they influence their evolution, acting as recombination hot spots, acquiring specific cell functions or becoming part of protein-coding regions. The latter is the subject of the present analysis. This study is a report on the annotation of transposable elements (TEs) in expressed sequences of Coffea arabica, Coffea canephora and Coffea racemosa, showing the occurrence of 383 ESTs and 142 unigenes with TE fragments in these three Coffea species. Based on selected unigenes, it was possible to suggest 26 putative proteins with TE-cassette insertions, demonstrating a likely contribution to protein variability. The genes for two of those proteins, the fertility restorer (FR) and the pyrophosphate-dependent phosphofructokinase (PPi-PFKs) genes, were selected for evaluating the impact of TE-cassettes on host gene evolution of other plant genomes (Arabidopsis thaliana, Oryza sativa and populus trichocarpa). This survey allowed identifying a FR gene in O. sativa harboring multiple insertions of LTR retrotransposons that originated new exons, which however does not necessarily mean a case of molecular domestication. A possible transduction event of a fragment of the PPi-PFK beta-subunit gene mediated by Helitron ATREPX1 in Arabidopsis thaliana was also highlighted.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^
Resumo:
We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current–voltage relationship, and a biphasic response to changes in extracellular Ca2+ ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits.
Resumo:
Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.
Resumo:
A cDNA and corresponding promoter region for a naturally occurring, feedback-insensitive anthranilate synthase (AS) α-subunit gene, ASA2, has been isolated from an unselected, but 5-methyl-tryptophan-resistant (5MTr), tobacco (Nicotiana tabacum) cell line (AB15–12-1). The ASA2 cDNA contains a putative transit peptide sequence, and Southern hybridization shows that more than one closely related sequence is present in the tobacco genome. The ASA2 cDNA complemented a trpE nonsense mutant Escherichia coli strain, allowing growth on 300 μm 5MT-containing minimal medium without tryptophan, and cell extracts contained feedback-insensitive AS activity. The 5MTr was lost when the E. coli strain was transformed with an ASA2 site-directed mutant (phenylalanine-107-arginine-108 → serine-107-glutamine-108). Identical nucleotide sequences encoding the phenylalanine-107-arginine-108 region have been found in polymerase chain reaction-amplified 326-bp ASA2 genomic fragments of wild-type (5-methyl-tryptophan-sensitive [5MTs]) tobacco and a progenitor species. High-level ASA2 transcriptional expression was detected only in 5MTr-cultured cells, not in 5MTs cells or in plants. Promoter studies indicate that tissue specificity of ASA2 is controlled by the promoter region between −2252 and −607. Since the ASA2 promoter sequences are not substantially different in the 5MTr and 5MTs lines, the increased levels of ASA2 mRNA in the 5MTr lines are most likely due to changes in a regulatory gene affecting ASA2 expression.
Resumo:
Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein, accentuates growth and α-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Δ or a deletion of the AP-1 β subunit gene (apl2Δ) alone are phenotypically normal, but cells carrying both gga2Δ and apl2Δ are defective in growth, α-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.
Resumo:
Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1,000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx(2d). The stx(2) operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx(2), stx(2c) (vha), stx(2c) (vhb), or stx(2d) (EH250). Subsequently, the stx(2c) (vha) and stx(2c) (vhb) operons were screened for the absence of a PstI site in the stx(2a) subunit gene, a restriction site polymorphism which is a predictive indicator for the stx(2d) (activatable) genotype. Twelve STEC isolates carrying putative stx(2d) operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx(2d). The complete nucleotide sequences of seven representative stx(2d) operons were determined. Shiga toxin expression in stx(2d) isolates was confirmed by immunoblotting. stx(2d) isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages phi1662a and phi1720a carrying the stx(2d) operons. RFLP analysis of bacteriophage genomic DNA revealed that phi1662a and phi1720a were highly related to each other; however, the DNA sequences of these two stx(2d) operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable stx(2d) Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.
Resumo:
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Resumo:
Olfactory marker protein (OMP) is expressed by mature primary olfactory sensory neurons during development and in adult mice. In mice that lack OMP, olfactory sensory neurons have perturbed electrophysiological activity, and the mice exhibit altered responses and behavior to odor stimulation. To date, defects in axon guidance in mice that lack OMP have not been investigated. During development of the olfactory system in mouse, primary olfactory axons often overshoot their target glomerular layer and project into the deeper external plexiform layer. These aberrant axonal projections are normally detected within the external plexiform layer up to postnatal day 12. We have examined the projections of primary olfactory axons in OMP-tau:LacZ mice and OMP-GFP mice, two independent lines in which the OMP coding region has been replaced by reporter molecules. We found that axons overshoot their target layer and grow into the external plexiform layer in these OMP null mice as they do in wild-type animals. However, in the absence of OMP, overshooting axons are more persistent and remain prominent until 5 weeks postnatally, after which their numbers decrease. Overshooting axons are still present in these mice even at 8 months of age. In heterozygous mice, axons also overshoot into the external plexiform layer; however, there are fewer axons, and they project for shorter distances, compared with those in a homozygous environment. Our results suggest that perturbed electrophysiological responses, caused by loss of OMP in primary olfactory neurons, reduce the ability of primary olfactory axons to recognize their glomerular target. © 2005 Wiley-Liss, Inc.
GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype
Resumo:
We investigated the hypothesis that alcoholism risk may be mediated by genes for neurotransmitters (dopamine, serotonin, opioid, GABAA and glutamate) associated with the dopamine reward system, and with genes involved in ethanol metabolism and fibrogenesis (ADH2, ADH3, ALDH2, CYP2E1, COL1A2, and ApoE). DNA was extracted from brain tissue collected at autopsy from pathologically characterised alcoholics and controls. PCR-based studies showed that alcoholism was associated with polymorphisms of the dopamine D2 receptor (DRD2) Taq1 B (p 0.005) and the GABAA 2 subunit C1412T (p 0.007) genes but not with the glutamate receptor subunit gene NR2B (366C/G), the serotonin transporter gene (5HTTL-PR), the dopamine transporter gene DAT1(SLC6A3), the Mu opioid receptor gene MOR1 (A118G and C1031G), the dopamine D2 receptor gene DRD2 Taq1 A or the GABAA 1(A15G), 6(T1519C) and 2(G3145A) subunit genes. The glial glutamate transporter gene EAAT2 polymorphism G603A was associated with alcoholic cirrhosis (p 0.024). The genotype for the most active alcohol dehydrogenase ADH3 was associated with a lower risk of alcoholism (p 0.027) and was less prevalent in alcoholics with DRD2 Taq1 A2/A2 (p 0.007), Taq1 B2/B2 (p 0.038) and GABAA-2 1412C/C (p 0.005) and EAAT2 603G/A (p 0.020) genotypes. Combined genotypes of DRD2 Taq1 A and B, GABAA-2, and EAAT2 G603A polymorphisms suggested a concerted influence of dopamine, GABAA and glutamatergic neurotransmitters in the predisposition to alcoholism.
Resumo:
In chronic pain, opioids represent the gold standard analgesics, but their use is hampered by the development of several side effects, as development of analgesic tolerance and opioid-induced hyperalgesia. Evidence showed that many molecular mechanisms (changes in opioid receptors, neurotransmitter release, and glia/microglia activation) are involved in their appearance, as well as in chronic pain. Recently, a crucial role has been proposed for oxidative stress and proteasome in chronic pain and in treatment-related side effects. To better elucidate these aspects, the aim of this PhD thesis was to investigate the effects of opioids on cell oxidative stress, antioxidant enzymatic machinery and proteasome expression and activity in vitro. Also, the involvement of proteasome in the development of chronic pain conditions was investigated utilizing an experimental model of oxaliplatin-induced neuropathy (OXAIN), in vivo. Data showed that morphine, fentanyl, buprenorphine and tapentadol alter differently ROS production. The ROS increasing effect of morphine is not shared by the other opioids, suggesting that the different pharmacological profile could influence this parameter. Moreover, these drugs produced different alterations of β2trypsin-like and β5chymotrypsin-like activities. In fact, while morphine and fentanyl increased the proteolytic activity after prolonged exposure, a different picture was observed for buprenorphine and tapentadol, suggesting that the level of MOR agonism could be strongly related with proteasome activation. In vivo studies revealed that rats treated with oxaliplatin showed a significant increase in β5, in the thalamus (TH) and somatosensory cortex (SSCx). Moreover, a selective up-regulation of β5 and LMP7 subunit gene expression was assessed in the SSCx. Furthermore, our study revealed that oprozomib, a selective β5 inhibitor normalized the spinal prodynorphin gene expression upregulation induced by oxaliplatin, and reverted mechanical/thermal allodynia and mechanical hyperalgesia in oxaliplatin-treated rats. These results underline the role of proteasome in the OXAIN and suggest new pharmacological targets to counteract it.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.