287 resultados para Subterranean termite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles of two isolates of subterranean clover red leaf virus were purified by a method in which infected plant tissue was digested with an industrial-grade cellulase, Celluclast® 2.0 L type X. The yields of virus particles using this enzyme were comparable with those obtained using either of two laboratory-grade cellulases, Cellulase type 1 (Sigma) and Driselase®. However, the specific infectivity or aphid transmissibility of the particles purified using Celluclast® was 10-100 times greater than those of preparations obtained using laboratory-grade cellulases or no enzyme. The main advantage of using Celluclast® is that at present in Australia its cost is only ca. 1% of laboratory-grade cellulases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urana is a hardseeded, moderately early flowering F-5-derived crossbred subterranean clover of var. subterraneum [( Katz. et Morley) Zohary and Heller] developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It has been selected for release as a new cultivar on the basis of its high winter and spring herbage production and overall field performance relative to other subterranean clovers of similar maturity. Urana is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 5 - 7 months, which extends into mid-October. Urana is suited to phase farming and crop rotations. It has been granted Plant Breeders Rights in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coolamon is a mid-season to late-season flowering F4-derived crossbred subterranean clover of var. subterraneum, developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for Junee and has been selected for release on the basis of its greater herbage production and persistence, and its resistance to both known races of clover scorch. Coolamon is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 6.5-8 months that extends into November. Coolamon is best suited to phase farming and permanent pasture systems. It can also be used in cropping rotations, but at least 2 years of pasture are required between crops. Coolamon has been granted Plant Breeders Rights in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Izmir is a hardseeded, early flowering, subterranean clover of var. subterraneum (Katz. et Morley) Zohary and Heller collected from Turkey and developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a more hardseeded replacement for Nungarin and best suited to well-drained, moderately acidic soils in areas with a growing season of less than 4.5 months. Izmir seed production and regeneration densities in 3-year pasture phases were similar to Nungarin in 21 trials across southern Australia, but markedly greater in years following a crop or no seed set. Over all measurements, Izmir produced 10% more winter herbage and 7% more spring herbage than Nungarin. Its greater hardseededness and good seed production, makes it better suited to cropping rotations than Nungarin. Softening of Izmir hard seeds occurs later in the summer–autumn period than Nungarin, giving it slightly greater protection from seed losses following false breaks to the season. Izmir is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. Izmir has been granted Plant Breeders Rights in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termite mounds are conspicuous features in many tropical ecosystems. Their shape and soil physicochemical properties have been suggested to result from the termites ecological need to control the temperature and humidity within their nests and protect themselves from predators. This study aimed to determine the influence of the parent soil properties on the shape and soil physical and chemical properties of termite mounds. Termite mounds built by the fungus-growing termite species Odontotermes obesus were compared in two forests with different soil properties (Ferralsol or Luvisol) in Southern India. Our findings confirm that soil properties influence the physicochemical characteristics of mound material and may affect the shape, but these impacts are mostly independent of the size of the mounds (i.e., the age of the colonies). Mound walls were more enriched in clay and impoverished in C and N in the Luvisol than the Ferralsol. However, their shape was more complex in the Ferralsol than the Luvisol, suggesting a possible link between the clay content in soil and the shape of termite mounds. The results also suggest that clay becomes enriched in O. obesus mound walls through a more passive process rather than solely by particle selection, and that termite mound shape results from the soil properties rather than the ecological needs of termites. In conclusion, although ecologists have mainly focused upon the influence of termite ecological needs on their nest properties, this study highlights the need for a better understanding about the role of the soil pedological properties and, as a consequence, how these properties drive the establishment and survival of termites in tropical ecosystems. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and ferralsol areas). This study also showed that O. obesus has a limited effect on soil physical properties. No differences in soil particle size, pH, or the C:N ratio and base saturation were measured whereas the C and N contents were reduced and CEC was higher in termite nest soils in both environments. Clay mineralogical composition was also measured, and showed the presence of higher amounts of smectite clays in termite nest soils, which thus explained the increasing CEC despite the reduced C and N content. However, the main difference was the shape of the termite mounds. The degradation of the nests created a hillock of eroded soil at the base of termite mounds in the vertisol while only a thin layer of eroded soil was observed in the ferralsol. The increased degradation of termite mounds in the vertisol is explained by the presence of smectites (2:1 swelling clays), which confer macroscopic swelling and shrinking characteristics to the soil. Soil shrinkage during the dry season leads to the formation of deep cracks in the termite mounds that allow rain to rapidly penetrate inside the mound wall and then breakdown unstable aggregates. In conclusion, it appears that despite a similar abundance, termite mound properties depend to a large extent on the soil properties of their environments. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The termite hindgut microbial ecosystem functions like a miniature lignocellulose-metabolizing natural bioreactor, has significant implications to nutrient cycling in the terrestrial environment, and represents an array of microbial metabolic diversity. Deciphering the intricacies of this microbial community to obtain as complete a picture as possible of how it functions as a whole, requires a combination of various traditional and cutting-edge bioinformatic, molecular, physiological, and culturing approaches. Isolates from this ecosystem, including Treponema primitia str. ZAS-1 and ZAS-2 as well as T. azotonutricium str. ZAS-9, have been significant resources for better understanding the termite system. While not all functions predicted by the genomes of these three isolates are demonstrated in vitro, these isolates do have the capacity for several metabolisms unique to spirochetes and critical to the termite system’s reliance upon lignocellulose. In this thesis, work culturing, enriching for, and isolating diverse microorganisms from the termite hindgut is discussed. Additionally, strategies of members of the termite hindgut microbial community to defend against O2-stress and to generate acetate, the “biofuel” of the termite system, are proposed. In particular, catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes are described in the “anaerobic” termite hindgut spirochetes T. primitia str. ZAS-1 and ZAS-2, and the first evidence for aromatic ring cleavage in the phylum (division) Spirochetes is also presented. These results suggest that the potential for O2-dependent, yet nonrespiratory, metabolisms of plant-derived aromatics should be re-evaluated in termite hindgut communities. Potential future work is also illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the relationship between genetic diversity of the subterranean Gansu zokor Myospalax cansus and habitat variability in the Loess Plateau, Qinghai Province, China. We used a combination of geographic information systems and molecular techniques to assess the impact of habitat composition and human activities on the genetic diversity of zokor populations in this semi-natural landscape. Although they occurred relatively infrequently in the landscape, woodland and high-coverage grassland habitats were the main positive contributors to the genetic diversity of zokor populations. Rural residential land, plain agricultural land and low-coverage grassland had a negative effect on genetic diversity. Hilly agricultural land and middle-coverage grassland had little impact on zokor genetic diversity. There were also interactions between some habitat types, that is, habitat types with relatively better quality together promoted conservation of genetic diversity, while the interaction between (among) bad habitat types made situations worse. Finally, habitat diversity, measured as patch richness and Shannon's diversity index, was positively correlated with the genetic diversity. These results demonstrated that: (1) different habitat types had different effects on the genetic diversity of zokor populations and (2) habitat quality and habitat heterogeneity were important in maintaining genetic diversity. Habitat composition was closely related to land use thus emphasizing the importance of human activities on the genetic diversity of subterranean rodent populations in this semi-natural landscape. Although the Gansu zokor was considered to be a pest species in the Loess Plateau, our study provides insights for the management and conservation of other subterranean rodent species.