967 resultados para Sub Tropical front (STF)
Resumo:
We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale.
Resumo:
Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
Resumo:
A freshly dead bigeye tuna Thunnus obesus was washed ashore near Burry Port, Wales (51 degrees 40' N; 4 degrees 15' W) in August, 2006. This is only the third occasion that the species has been observed in British waters, and is the largest and most northerly recorded specimen.
Resumo:
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.
Resumo:
This study analyzed the relationship between environmental factors, especially air pollution and climatic conditions, and non-structural carbohydrates (NSC) in plants of Lolium multiflorum exposed during 10 consecutive periods of 28 days at a polluted site (Congonhas) and at a reference site in Sao Paulo city (Brazil). After exposure, NSC composition and leaf concentrations of Al, Fe. Cu, Zn, Pb and Cd were measured. The seasonal pattern of NSC accumulation was quite similar in both sites, but plants at Congonhas showed higher concentrations of these compounds, especially fructans of low and medium degree of polymerization. Regression analysis showed that NSC in plants growing at the polluted site were explained by variations on temperature and leaf concentration of Fe (positive effect), as well as relative humidity and particulate material (negative effect). NSC in the standardized grass culture, in addition to heavy metal accumulation, may indicate stressing conditions in a sub-tropical polluted environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to evaluate the influence of alterations in pluviosity and ecological variables on microphytoplankton (> 20 mu m) structure (composition, richness, diversity, and abundance) and its biomass (chlorophyll-a), comparing different regions in a stretch of the low Igua double dagger u River and in some tributaries. Phytoplankton was sampled in 10 stations (5 in Igua double dagger u River and 5 in tributaries) during a dry period (April/2004) and an atypical rainy period (June/2004). The conductivity showed significant difference among the sampling points. Temperature, dissolved oxygen, pH, silicate, and nitrate showed significant differences between the dry and wet periods. Phytoplankton was composed of 149 taxa, and the most representative class was Chlorophyceae (71 taxa), followed by Bacillariophyceae (35 taxa), and Cyanophyceae (25 taxa). During the rainy period, stations of Igua double dagger u River showed higher taxa number and total density compared to the tributaries, but the values were similar in the dry period. Tributaries presented higher diversity and equitability in both periods. Except by two stations in Igua double dagger u River, the higher taxa number, densities and biomass occurred in the dry period, associated to low levels of suspended matter. The canonical correspondence analysis indicated the dominance of Bacillariophyceae and Chrysophyceae in the rainy period related to nitrate and suspended matter. Two other groups were observed in the dry period: one formed by Cyanophyceae, Dinophyceae, and Rhodophyceae, related to temperature and nitrite and other by Euglenophyceae and Chlorophyceae related to total phosphorus and silicate. The groups suggest adequate conditions of the physical, chemical and climatic factors to the establishment of the algae classes. Phytoplanktonic assemblages responded quickly to the environmental regional variations under strong influence of pluviosity, while in the dry period, homogeneity among stations and environmental variables was observed. The importance of climatic events is relevant in ecological studies in a temporal scale.
Resumo:
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Heterotrophic bacterial and biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both and bacterioplankton biomass and activity along the estuary. While in the Northern region is light-limited, with mean production (PP) between 1.1 and 1.9 mu g C l(-1) h(-1) and mean specific growth rates (PSG) between 0.14 and 0.16 d(-1), the Southern region registered values as high as 24.7 mu g C l(-1) h(-1) for PP and 2.45 d(-1) (mean PP between 3.4 and 7.3 mu g C l(-1) h(-1); mean PSG between 0.28 and 0.57 d(-1)). On the other hand, maximum bacterial production (BP: 63.8 mu g C l(-1) h(-1)) and specific growth rate (BSG: 32.26 d(-1)) were observed in the Northern region (mean BP between 3.4 and 12.8 mu g C l(-1) h(-1); mean BSG between 1.98 and 6.67 day(-1)). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (similar to 45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).
Resumo:
The feeding ecology of the Brazilian silverside, Atherinella brasiliensis, in a sub-tropical estuary of Brazil was investigated through the gut analysis of 1431 individuals. We described dietary composition and analysed seasonal, estuarine habitat, and body size variations in the diet; trophic level; feeding diversity; and gut fullness indices. Results reveal that A. brasiliensis is a typical, generalistic and opportunistic predator that makes use of a wide array of prey types (at least 89 different types), with zooplankton (mainly calanoids), diatoms, terrestrial insects, and plant detritus making up the bulk of the overall diet. The exotic calanoid Temora turbinata ranked as the primary prey. A wide feeding diversity (mean H` = 2.26), low trophic level (mean TROPH = 2.57), and high gut replenishment were persistent across seasons and habitats. Diet composition varied largely and significantly with respect to habitat, season, and body size. A closer assessment showed that habitat and season had a stronger effect on diet than fish size.
Resumo:
The feeding ecology of the American freshwater goby Ctenogobius shufeldti in a low salinity salt-marsh habitat in the Paranagua Bay estuarine complex (Brazil) was assessed through the gut analysis of 632 individuals. The effects of a set of abiotic factors (type of sediment, salinity, temperature and estuarine reach), season and body size on dietary composition were analysed. Seasonal and size-related changes in feeding strategy, feeding intensity and trophic level were assessed. The effects of gape and body size on prey size use were also analysed. The results showed that C. shufeldti is a typical omnivorous, generalized benthic predator of low trophic levels throughout the seasons and size classes, feeding on 56 dietary items; tanaids, chlorophyte algae, ostracods, gastropods, detritus and benthic diatoms made up the bulk of its diet. The tanaid Kalliapseudes schubarti was the main prey item in both numerical and volumetric terms. The gut fullness was persistently high across the seasons. As expected for a typical generalized, opportunistic omnivorous feeder: (1) seasonal and spatial-temporal variability of abiotic factors had a significant effect on diet structure, (2) season accounted for most of the dietary variation and (3) diet composition and the size of prey consumed did not vary across the size classes.
Resumo:
The city of Sao Paulo is located in a subtropical region whose climate exhibits few defined seasons as well as frequent oscillations in temperature and rainfall throughout the year. In addition to interfering with physiological processes, these peculiar climatic dynamics influence the formation of O-3 and its influx into leaves, causing species used as bioindicators in temperate climates to be ineffective here. This study evaluated gas exchange variations in CO2 and H2O and leaf injuries induced by O-3 in Nicotiana tabacum Bel-W3 in relation to oscillations in environmental conditions. Plants were exposed to an O-3-polluted environment for fifteen periods of fourteen days each throughout 2008. Gas exchange and O-3 were higher during the summer and winter but were highly variable in all seasons. Severe injuries occurred during the winter and spring, with significant variation in this parameter being observed throughout the year. An analysis of biotic and abiotic variables revealed complex relationships among them, with great importance of meteorological factors in plant responses. We conclude that under unstable climatic conditions, the relationship between O-3 flux and injury is weak, and the qualitative character of biomonitoring is further confirmed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Emergence and persistence characteristics of Phalaris paradoxa seeds in no- and minimum-till situations and at different burial depths were studied in a sub-tropical environment. Three experiments were carried out using naturally shed seeds. In the first experiment, seedlings emerged from May through to September each year, although the majority of seedlings emerged in July. In the second experiment with greater seed density, cultivation in March of each year stimulated seedling emergence, altered the periodicity of emergence and accelerated the decline of seeds in the seedbank compared with plots that received no cultivation. The majority of seedlings in the cultivated plots emerged in May whereas the majority of seedlings in the undisturbed plots emerged in July. Emergence accounted for only 4-19% of the seedbank in both experiments over 2 years. Seed persistence was short in both field experiments, with less than 1% remaining 2 years after seed shed. In the third experiment, burial depth and soil disturbance significantly influenced seedling emergence and persistence of seed. Seedlings emerged most from seed mixed in the top 10 cm when subjected to annual soil disturbance, and from seed buried at 2.5 and 5.0 cm depths in undisturbed soil. Emergence was least from seed on the soil surface, and buried at 10 and 15 cm depths in undisturbed soil. Seeds persisted longest when shed onto the soil surface and persisted least when the soil was tilled. These results suggest that strategic cultivation may be a useful management tool, as it will alter the periodicity of emergence allowing use of more effective control options and will deplete the soil seedbank more rapidly.