912 resultados para Structural damage identification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study discusses structural damage diagnosis of real steel truss bridges by measuring trafficinduced vibration of bridges and utilizing a damage indicator derived from linear system parameters of a time series model. On-site damage experiments were carried out on real steel truss bridges. Artificial damage was applied to the bridge by severing a truss member with a cutting machine.Vehicle-induced vibrations of the bridges before and after applying damagewere measured and used in structural damage diagnosis of the bridges. Changes in the damage indicator are detected by Mahalanobis-Taguchi system (MTS) which is one of multivariate outlier analyses. The damage indicator and outlier detection was successfully applied to detect anomalies in the steel truss bridges utilizing vehicle-induced vibrations. Observations through this study demonstrate feasibility of the proposed approach for real world applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. AcetylL-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METHtriggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: Enthesitis is the hallmark of spondyloarthritis (SpA), and is observed in all subtypes. Wide information on SpA abnormalities, including synovitis, tendinitis and enthesitis, can be efficiently perceived by Doppler ultrasound. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect enthesis alterations; and vascularized enthesitis detected by Doppler ultrasound appears to be a valuable diagnostic tool to confirm SpA diagnosis. However, data published until now concerning entheseal elementary alterations that characterize SpA enthesitis (enthesis inflammatory activity) or enthesopathy (permanent structural changes) reflect rather the authors’ empiric opinion than a methodological validation process. In this sense it seems crucial to identify elementary entheseal lesions associated with activity or damage, in order to improve monitoring and treatment response in SpA patients. The development of better assessment tools is today a challenge and a need in SpA. The first study of this thesis focused on the analysis of the reliability of inter-lector and inter-ultrasonography equipment of Madrid sonography enthesitis index (MASEI). Fundamental data for the remaining unrolling project validity. In the second and third studies we concerned about two entheseal elemental lesions: erosions and bursa. In literature erosions represent a permanent structural damage, being useful for monitoring joint injury, disease activity and therapeutic response in many rheumatic diseases; and to date, this concept has been mostly applied in rheumatoid arthritis (RA). Unquestionably, erosion is a tissue-related damage and a structural change. However, the hypothesis that we decided to test was if erosions represent a permanent structural change that can only grow and worsen over time, as occurs in RA, or a transitory alteration. A longitudinal study of early SpA patients was undertaken, and the Achilles enthesis was used as a model. Our results strongly suggested that previously detected erosions could disappear during the course of the disease, being consistent with the dynamic behavior of erosion over time. Based on these striking results it seems reasonable to suggest that the new-bone formation process in SpA could be associated with the resolution of cortical entheseal erosion over time. These results could also be in agreement with the apparent failure of anti-tumor necrosis factor (TNF) therapies to control bone proliferation in SpA; and with the relation of TNF-α, Dickkopf-related protein 1 (Dkk-1) and the regulatory molecule of the Wnt signaling pathway in the bone proliferation in SpA. In the same model, we then proceeded to study the enthesis bursa. Interestingly, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) enthesopathy definition does not include bursa as an elementary entheseal lesion. Nonetheless, bursa was included in 46% of the enthesis studies in a recently systematic literature review, being in agreement with the concept of “synovio-entheseal complex” that includes the link between enthesitis and osteitis in SpA. It has been clarified in recent data that there is not only a close functional integration of the enthesis with the neighboring bone, but also a connection between enthesitis and synovitis. Therefore, we tried to assess the prevalence and relevance of the bursa-synovial lesion in SpA. Our findings showed a significant increase of Achilles bursa presence and thickness in SpA patients compared to controls (healthy/mechanical controls and RA controls). These results raise awareness to the need to improve the enthesopathy ultrasonographic definition. In the final work of this thesis, we have explored new perspectives, not previously reported, about construct validity of enthesis ultrasound as a possible activity outcome in SpA. We performed a longitudinal Achilles enthesis ultrasound study in patients with early SpA. Achilles ultrasound examinations were performed at baseline, six- and twelve-month time periods and compared with clinical outcome measures collected at basal visit. Our results showed that basal erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are higher in patients with Doppler signal in enthesis, and even that higher basal ESR, CRP and Ankylosing Spondylitis Disease Activity Score (ASDAS) predicted a higher Doppler signal (an ultrasound alteration accepted as representative of inflammation) six months later. Patients with very high disease activity assessed by ASDAS (>3.5) at baseline had significantly higher Achilles total ultrasound score verified at the same time; and ASDAS <1.3 predicted no Doppler signal at six and twelve months. This seems to represent a connection between classical biomarkers and clinical outcomes associated with SpA activity and Doppler signal, not only at the same time, but also for the following months. Remarkably, patients with inactive disease (ASDAS < 1.3) at baseline had no Doppler signal at six and twelve months. These findings reinforce the potential use of ultrasound related techniques for disease progression assessment and prognosis purposes. Intriguingly, Ankylosing Spondylitis Disease Activity Index (BASDAI) didn’t show significant differences between different cut-offs concerning ultrasound lesions or Doppler signal, while verified with ASDAS. These results seem to indicate that ASDAS reflects better than BASDAI what happens in the enthesis. The work herein discussed clearly shows the potential utility of ultrasound in enthesis assessment in SpA patients, and can be important for the development of ultrasound activity and structural damage scores for diagnosis and monitoring purposes. Therefore, local promotion of this technique constitutes a medical intervention that is worth being tested in SpA patients for diagnosis, monitoring and prognosis purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studies the capability of generalization of Neural Network using vibration based measurement data aiming at operating condition and health monitoring of mechanical systems. The procedure uses the backpropagation algorithm to classify the input patters of a system with different stiffness ratios. It has been investigated a large set of input data, containing various stiffness ratios as well as a reduced set containing only the extreme ones in order to study generalizing capability of the network. This allows to definition of Neural Networks capable to use a reduced set of data during the training phase. Once it is successfully trained, it could identify intermediate failure condition. Several conditions and intensities of damages have been studied by using numerical data. The Neural Network demonstrated a good capacity of generalization for all case. Finally, the proposal was tested with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The success of open and endovascular repair of abdominal aortic aneurysms (AAA) is hampered by postoperative dilatation of the anatomical neck of the AAA, which is used for graft attachment. The purpose of this study was to determine whether the macroscopically non-diseased infrarenal aortic neck of AAA is histologically and biochemically altered at the time of operative repair. METHODS: We harvested full-thickness aortic wall samples as longitudinal stripes spanning from AAA neck to aneurysmal sac in 22 consecutive patients undergoing open surgical AAA repair. Control tissue was obtained from five organ donors and five deceased subjects undergoing autopsy without evidence of aneurysmal disease. We assessed aortic media thickness, number of intact elastic lamellar units, media destruction, and neovascularization grade and performed immunohistochemistry for matrix metalloproteinase (MMP)-9 and phosphorylated c-Jun N-terminal kinase (p-JNK). MMP-9 and p-JNK protein expressions were quantified using Western Blots. RESULTS: The median thickness of the aortic media was 1150 mum in control tissue (range, 1000-1300), 510 mum in aortic necks (250-900), and 200 mum in aortic sacs (50-500, P from nonparametric test for trend <.001). The number of intact elastic lamellar units was 33 in controls (range, 33-55), 12 in aortic necks (0-31) and three in aortic sacs (0-10, P < .001). The expression of MMP-9 and p-JNK as assessed by Western Blots (P = .007 and .061, respectively) and zymography (P for trend <.001) were up regulated in both the AAA neck and sac compared with controls. Except for p-JNK expression, differences between tissues were similar after the adjustment for age, gender, and type of sampling. CONCLUSION: The seemingly non-diseased infrarenal AAA neck in patients with AAA undergoing surgical repair shows histological signs of destruction and upregulation of potential drug targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isospectral beams have identical free vibration frequency spectrum for a specific boundary condition. The problem of finding non-uniform beams which are isospectral to a given uniform beam, with fixed-free boundary condition, leads to a multimodal optimization problem. The first Q natural frequencies of the given uniform Euler-Bernoulli beam are determined using analytical solution. The first Q natural frequencies of a non-uniform beam are obtained with the help of finite element modeling. In order to obtain the non-uniform beams isospectral to a given uniform beam, an error function is designed, which calculates the difference between the spectra of the given uniform beam and the non-uniform beam. In our study, this error function is minimized using electromagnetism inspired optimization technique, a population based iterative algorithm inspired by the attraction-repulsion physics of electromagnetism. Numerical results show the existence of the isospectral non-uniform beams for a given uniform beam, which occur as local minima. Non-uniform beams isospectral to a damaged beam, are also explored using the proposed methodology to illustrate the fact that accurate structural damage identification is difficult by just frequency measurements. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta um estudo referente à aplicação da abordagem Bayesiana como técnica de solução do problema inverso de identificação de danos estruturais, onde a integridade da estrutura é continuamente descrita por um parâmetro estrutural denominado parâmetro de coesão. A estrutura escolhida para análise é uma viga simplesmente apoiada do tipo Euler-Bernoulli. A identificação de danos é baseada em alterações na resposta impulsiva da estrutura, provocadas pela presença dos mesmos. O problema direto é resolvido através do Método de Elementos Finitos (MEF), que, por sua vez, é parametrizado pelo parâmetro de coesão da estrutura. O problema de identificação de danos é formulado como um problema inverso, cuja solução, do ponto de vista Bayesiano, é uma distribuição de probabilidade a posteriori para cada parâmetro de coesão da estrutura, obtida utilizando-se a metodologia de amostragem de Monte Carlo com Cadeia de Markov. As incertezas inerentes aos dados medidos serão contempladas na função de verossimilhança. Três estratégias de solução são apresentadas. Na Estratégia 1, os parâmetros de coesão da estrutura são amostrados de funções densidade de probabilidade a posteriori que possuem o mesmo desvio padrão. Na Estratégia 2, após uma análise prévia do processo de identificação de danos, determina-se regiões da viga potencialmente danificadas e os parâmetros de coesão associados à essas regiões são amostrados a partir de funções de densidade de probabilidade a posteriori que possuem desvios diferenciados. Na Estratégia 3, após uma análise prévia do processo de identificação de danos, apenas os parâmetros associados às regiões identificadas como potencialmente danificadas são atualizados. Um conjunto de resultados numéricos é apresentado levando-se em consideração diferentes níveis de ruído para as três estratégias de solução apresentadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho são utilizados a técnica baseada na propagação de ondas acústicas e o método de otimização estocástica Luus-Jaakola (LJ) para solucionar o problema inverso relacionado à identificação de danos em barras. São apresentados o algoritmo algébrico sequencial (AAS) e o algoritmo algébrico sequencial aperfeiçoado (AASA) que modelam o problema direto de propagação de ondas acústicas em uma barra. O AASA consiste nas modificações introduzidas no AAS. O uso do AASA resolve com vantagens o problema de identificação de danos com variações abruptas de impedância. Neste trabalho são obtidos, usando-se o AAS-LJ e o AASA-LJ, os resultados de identificação de cinco cenários de danos. Três deles com perfil suave de impedância acústica generalizada e os outros dois abruptos. Além disso, com o objetivo de simular sinais reais de um experimento, foram introduzidos variados níveis de ruído. Os resultados alcançados mostram que o uso do AASA-LJ na resolução de problemas de identificação de danos em barras é bastante promissor, superando o AAS-LJ para perfis abruptos de impedância.