979 resultados para Structural Engineering
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
O presente trabalho, refere-se ao projecto de estabilidade, em betão armado e pré-esforçado, da Escola Superior de Enfermagem Artur Ravara, situada na zona da EXPO em Lisboa. O edifício apresenta-se com uma implantação em “L”, tendo como dimensões máximas 38,50m x 54,80m e desenvolve-se em altura por quatro pisos, dos quais, dois são enterrados. A estrutura do edifício em causa, apresenta duas juntas de dilatação, por forma a tornar desprezáveis os efeitos devidos à retracção e diminuição de temperatura, dividindo o edifício em três blocos. As suas fundações são indirectas, constituídas por estacas moldadas no terreno e respectivos maciços de encabeçamento. As lajes são fungiformes aligeiradas de moldes perdidos, de modo a permitir vencer maiores vãos, que variam entre os 6,60m e os 10,00m, e permitindo também maior rapidez de execução e maior economia. As consolas de 3,50m de vão, em laje maciça, são suportadas por vigas pré-esforçadas de secção variável. Para o cálculo automático da estrutura e da obtenção dos respectivos desenhos das armaduras, foi utilizado o programa de cálculo automático, Tricalc 7.1. O conteúdo do projecto em questão, sendo de carácter académico, não corresponde à versão real, à qual não se teve acesso. O dimensionamento das fundações, devido à fraca resistência dos solos e o dimensionamento da estrutura, devido à geometria e dimensões do edifício, permitiram enfrentar desafios interessantes. Tais desafios, deram possibilidade de enriquecer bastante os conhecimentos sobre a engenharia de estruturas.
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Estruturas
Resumo:
O presente relatório documenta o estágio desenvolvido na empresa SE2P – Sociedade de Engenharia, Projeto e Planeamento Lda. no âmbito da unidade curricular de DIPRE (Dissertação/Projeto/ Estágio) do Mestrado em Engenharia Civil – Ramo de Estruturas do Instituto Superior de Engenharia do Porto. A frequência no estágio curricular teve como objetivo principal o desenvolvimento de uma ferramenta de cálculo que permitisse o dimensionamento de ligações aço-betão segundo a prEN1992-4:2013. O desenvolvimento desta ferramenta resulta da necessidade do dimensionamento de soluções leves, económicas e esteticamente agradáveis tendo em conta a uniformização da legislação existente em toda a União Europeia. Atualmente, os projetistas têm utilizado programas de cálculo automático desenvolvidos por fabricantes de sistemas de ancoragens, como é o caso do Profis Anchor da Hilti. Esses programas de cálculo têm como base de dados as Diretrizes de Aprovação Técnica Europeia, a ETAG001- anexo C para dimensionamento de ancoragens mecânicas em betão e o relatório técnico EOTA TR029 para o dimensionamento de ancoragens químicas, apresentando até métodos de cálculo simplificados para uma rápida resposta ao cliente. A publicação da prEN1992-4:2013 é um marco importante, pois há já algum tempo que a construção metálica e mista está regulamentada apresentando algumas falhas no que diz respeito às ligações aço-betão. Esta norma é o culminar de anos de pesquisas, estudos e testes efetuados aos diferentes tipos de ligação tendo em conta além dos modos de rotura possíveis, os princípios de transferência de esforços.
Resumo:
O presente relatório refere-se ao trabalho desenvolvido durante o período de estágio curricular enquadrado no ciclo de estudos do Mestrado em Engenharia Civil do ISEP, Instituto Superior de Engenharia do Porto. O estágio desenvolveu-se ao longo de seis meses, desde Fevereiro até Julho de 2015, na empresa FASE S.A., em ambiente de gabinete, para a obtenção do grau de mestre em Engenharia Civil. Durante o período de estágio foram desenvolvidos projetos de estabilidade de estruturas metálicas e de betão armado, desde a fase de conceção, pré-dimensionamento, modelação numérica e análise de resultados, dimensionamento final, até à produção das peças desenhas e escritas constituintes de um projeto de estruturas. Foi possível analisar e dimensionar estruturas através de programas de cálculo automático e ferramentas de cálculo que serão referidas no presente relatório. Neste relatório será descrita pormenorizadamente a elaboração de um projeto em betão armado em todas as suas vertentes. Apresentam-se também as metodologias de cálculo empregues. No culminar, enunciam-se algumas conclusões de carácter geral decorrentes do trabalho desenvolvido.
Resumo:
Innovations in Structural Engineering and Construction - ISEC, 2008
Resumo:
Fibre reinforced thermoplastic pre impregnated materials produced continuously by diverse methods and processing conditions were used to produce composites using pultrusion. The processing windows used to produce these materials and composites profiles were optimized by using the Taguchi / DOE (Design of Experiments) methods. Composites were manufactured by pultrusion and compression moulding and subsequently submitted to mechanical testing and microscopy analysis. The obtained results were compared with the expected theoretical ones predicted from the Rule of Mixtures (ROM) and with those of similar engineering conventional available materials. The results obtained shown that produced composites have adequate properties for applications in common and structural engineering markets.
Resumo:
COST Action TU1406 aims to address the European economic and societal needs by standardizing the condition assessment and maintenance level of roadway bridges. Currently, bridge quality control plans vary from country to country and, in some cases, within the same country. This therefore urges the establishment of a European guideline to surpass the lack of a standard methodology to assess bridge condition and to define quality control plans for roadway bridges. Such a guideline will comprise specific recommendations for assessing performance indicators as well as for the definition of performance goals, bringing together different stakeholders (e.g. universities, institutes, operators, consultants and owners) from various scientific disciplines (e.g. on-site testing, visual inspection, structural engineering, sustainability, etc.) in order to establish a common transnational language. COST Action TU1406 Workshops aim to facilitate the exchange of ideas and experiences between active researchers and practitioners as well as to stimulate discussions on new and emerging issues in line with the conference topics. This first Workshop essentially focuses on WG1 issues, namely, intends to address performance indicators, how these are assessed (e.g. visual inspection, nondestructive tests and monitoring systems), with what frequency and what values are generally obtained. The main outcomes, given in this eBook, were really important, not only for WG1 developments, but also for all the other WGs and for the Action itself.
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
This paper deals with the problem of semiactive vibration control of civil engineering structures subject to unknown external disturbances (for example, earthquakes, winds, etc.). Two kinds of semiactive controllers are proposed based on the backstepping control technique. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological dampers being installed in the Washington University Structural Control and Earthquake Engineering Laboratory (WUSCEEL). The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
In this paper, we address this problem through the design of a semiactive controller based on the mixed H2/H∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H2/H∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evaluated in a real-time hybrid testing facility that consists of a physical specimen (a small-scale magnetorheological damper) and a numerical model (a large-scale three-story building)
Resumo:
This short paper addresses the problem of designing a QFT (quantitative feedback theory) based controllers for the vibration reduction in a 6-story building structure equipped with shear-mode magnetorheological dampers. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The design procedure for QFT control design is briefly presented
Resumo:
Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa and other states. To investigate the performance of these types of composite slabs at locations adjacent to abutment and pier diaphragms in skewed bridges, a research prcject which involved surveys of design agencies and precast producers, field inspections of existing bridges, analytical studies, and experimental testing was conducted. The survey results from the design agencies and panel producers showed that standardization of precast panel construction would be desirable, that additional inspections at the precast plant and at the bridge site would be beneficial, and that some form of economical study should be undertaken to determine actual cost savings associated with composite slab construction. Three bridges in Hardin County, Iowa were inspected to observe general geometric relationships, construction details, and to note the visual condition of the bridges. Hairline cracks beneath several of the prestressing strands in many of the precast panels were observed, and a slight discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was visible at isolated locations on several panels. Based on the findings of these inspections, future inspections are recommended to monitor the condition of these and other bridges constructed with precast panel subdecks. Five full-scale composite slab specimens were constructed in the Structural Engineering Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were subjected to wheel loads of service and factored level magnitudes at many locations on the slab surface and to concentrated loads which produced failure of the composite slab. The measured slab deflections and bending strains at both service and factored load levels compared reasonably well with the results predicted by simplified Finite element analyses of the specimens. To analytically evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories were applied. Yield-line limit loads were computed using the crack patterns generated during an ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. Since the punching shear limit loads in most instances were close to the failure loads, and since the failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism shape, the probable failure mode for all of the specimens was punching shear. The development lengths for the prestressing strands in the rectangular and trapezoidal shaped panels was qualitatively investigated by monitoring strand slippage at the ends of selected prestressing strands. The initial strand transfer length was established experimentally by monitoring concrete strains during strand detensioning, and this length was verified analytically by a finite element analysis. Even though the computed strand embedment lengths in the panels were not sufficient to fully develop the ultimate strand stress, sufficient stab strength existed. Composite behavior for the slab specimens was evaluated by monitoring slippage between a panel and the topping slab and by computation of the difference in the flexural strains between the top of the precast panel and the underside of the topping slab at various locations. Prior to the failure of a composite slab specimen, a localized loss of composite behavior was detected. The static load strength performance of the composite slab specimens significantly exceeded the design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the slabs did not appear to be affected when the ultimate strength test load was positioned on the portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, the joint between precast panels did not appear to influence the load distribution along the length of the specimens. Based on the static load strength of the composite slab specimens, the continued use of precast panels as subdecks in bridge deck construction is recommended.
Resumo:
In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others