783 resultados para Striped bass
Resumo:
Atlantic croaker Micropogonias undulatus is a commercially and ecologically important bottom-associated fish that occurs in marine and estuarine systems from Cape Cod, MA to Mexico. I documented the temporal and spatial variability in the diet of Atlantic croaker in Chesapeake Bay and found that in the summer fish, particularly bay anchovies Anchoa mitchilli, make up at least 20% of the diet of croaker by weight. The use of a pelagic food source seems unusual for a bottom-associated fish such as croaker, but appears to be a crepuscular feeding habit that has not been previously detected. Thus, I investigated the bioenergetic consequences of secondary piscivory to the distribution of croaker, to the condition of individuals within the population and to the ecosystem. Generalized additive models revealed that the biomass of anchovy explained some of the variability in croaker occurrence and abundance in Chesapeake Bay. However, physical factors, specifically temperature, salinity, and seasonal dynamics were stronger determinants of croaker distribution than potential prey availability. To better understand the bioenergetic consequences of diet variability at the individual level, I tested the hypothesis that croaker feeding on anchovies would be in better condition than those feeding on polychaetes using a variety of condition measures that operate on multiple time scales, including RNA:DNA, Fulton's condition factor (K), relative weight (Wr), energy density, hepatosomatic index (HSI), and gonadosomatic index (GSI). Of these condition measures, several morphometric measures were significantly positively correlated with each other and with the percentage (by weight) of anchovy in croaker diets, suggesting that the type of prey eaten is important in improving the overall condition of individual croaker. To estimate the bioenergetic consequences of diet variability on growth and consumption in croaker, I developed and validated a bioenergetic model for Atlantic croaker in the laboratory. The application of this model suggested that croaker could be an important competitor with weakfish and striped bass for food resources during the spring and summer when population abundances of these three fishes are high in Chesapeake Bay. Even though anchovies made up a relatively small portion of croaker diet and only at certain times of the year, croaker consumed more anchovy at the population level than striped bass in all simulated years and nearly as much anchovy as weakfish. This indicates that weak trophic interactions between species are important in understanding ecosystem processes and should be considered in ecosystem-based management.
Resumo:
The effects of adding the nonlethal bird repellent methyl anthranilate (MA), at levels of 100 and 1000 mg/kg, to fish feed on the bioaccumulation and growth of juvenile (10 g) hybrid striped bass (Morone chrysops x M. saxatilis) and juvenile (1g) African cichlid fish Aulonocara jacobfreibergi were investigated under laboratory conditions. The bird repellent did not have any effect on the fish growth or survival over a period of 6 weeks. MA residues at low levels of 11.2 ± 2.6 mg/g were found in lipophilic tissues (liver) of MA-fed fish. Control fish, which had no MA added to their diet, had a much lower level of 0.6 ± 0.3 mg/g MA in their liver. Fish muscle was found to contain negligible MA residues, while the outer body surface mucus did not contain any MA. Following a 6-week depuration period, during which the previously MA-fed hybrid striped bass were fed a feed to which no MA was added, the levels of MA residues detected were reduced by one order of magnitude.
Resumo:
In this study, we investigated the physiological alterations during ontogeny for cachara (Pseudoplatystoma reticulatum) and their hybrid larvae (Pseudoplatystoma corruscans x P. reticulatum) using lipids and fatty acids as physiological tools to elucidate the basis for differences in these groups' productivity in an industrial setting. Eggs and larvae samples were collected during January and February of 2008 in the city of Bandeirantes, MS, and were divided into three primary phases: phase I (0-16 h after fertilization); phase II (24 h after fertilization to 6 days after fertilization); and phase III (7-25 days after fertilization). The larvae of both groups showed a high degree of similarity, suggesting that the hybrid larvae showed a high level of heritability from the cachara broodstock. Analysis of the total lipid content provided evidence that there is no alteration in lipid concentration during ontogeny for both groups (i.e., the cachara and hybrids). However, the fatty acid profile showed that during the endogenous feeding period (phase II), when the larvae must use the energy reserves from the mother, the cachara larvae used mainly monounsaturated fatty acids for development. This is typical for most fish species, though notably, the hybrids preferentially used saturated fatty acids. Furthermore, certain specific changes demonstrate unique patterns of energy utilization and structural substrates, which may aid in elucidating the empirical differences reported by fish farmers (i.e., that the hybrids perform better than cacharas in captivity).
Resumo:
The objective of this study was to determine the effects, if any, of sublethal concentrations of suspended materials on the fish in estuarine systems. Experimental sediment suspensions reproduced the concentrations frequently found during flooding and at dredging sites and dredged-material disposal sites. The suspensions were of natural sediment, obtained from the Patuxent River estuary, Maryland, or commercially available Fuller's earth. Fish were collected in the Patuxent River estuary and transported to the laboratory. The selected fish species inhabited ecologically different sections of the estuary; therefore, the overall reactions of each species were unique. Seven species of estuarine fish were exposed to Fuller's earth and natural sediment suspensions for timed periods and hematological changes were noted. The effects of various concentrations of Fuller's earth suspensions on white perch gill tissue were determined. Oxygen consumption rates of striped bass, white perch, and toadfish were measured in filtered Patuxent River water and compared to consumption rates in filtered river water suspensions of Fuller's earth or Patuxent River sediment. Fish showed signs of stress in response to suspended sediments in most of the experiments. Results indicate that sublethal concentrations of suspended solids can affect estuarine fish.
Resumo:
Molecular and morphological data indicate that the pest thrips damaging Myoporum species in California and Hawai'i, Klambothrips myoporiMound and Morris, originated in Tasmania, Australia. This trans-Pacific dispersal presumably resulted from the international horticultural trade in Myoporum species. The data distinguish the pest from K. adelaideae sp.n. that induces leaf deformation on M. insulare along the coast of mainland Australia that is separated by ∼300km from Tasmania by the Bass Strait. K. myopori is more damaging to its non-native hosts in California and Hawai'i than to M. insulare in Tasmania, and further research is needed to determine if this is the result of release from its natural enemies. However, in certain areas of California, some Myoporum species are invasive weeds, and K. myopori may be considered an example of an accidental but beneficial introduction in this instance because of its detrimental impact on the plant species.
Resumo:
Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Resumo:
The project investigated the molecular response of Tra catfish (Pangasianodon hypophthalmus) to elevated salinity conditions. We employed Next generation sequencing platform to evaluate differential gene expression profiles of key genes under two salinity conditions. Results of the current project can form the basis for further studies to confirm the functional roles of specific genes that influence salinity tolerance in the target species and more broadly in other freshwater teleost fishes. Ultimately, the approach can contribute to developing superior culture stocks of the target species.
Resumo:
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97 bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478 bp and N50 length of 506 bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Resumo:
In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.
Resumo:
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.