998 resultados para Stretching modes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plumbogummite PbAl3(PO4)2(OH,H2O)6 is a mineral of environmental significance and is a member of the alunite-jarosite supergroup. The molecular structure of the mineral has been investigated by Raman spectroscopy. The spectra of different plumbogummite specimens differ although there are many common features. The Raman spectra prove the spectral profile consisting of overlapping bands and shoulders. Raman bands and shoulders observed at 971, 980, 1002 and 1023 cm−1 (China sample) and 913, 981, 996 and 1026 cm−1 (Czech sample) are assigned to the ν1 symmetric stretching modes of the (PO4)3−, at 1002 and 1023 cm−1 (China) and 996 and 1026 cm−1 to the ν1 symmetric stretching vibrations of the (O3POH)2− units, and those at 1057, 1106 and 1182 (China) and at 1102, 1104 and 1179 cm−1 (Czech) to the ν3 (PO4)3− and ν3 (PO3) antisymmetric stretching vibrations. Raman bands and shoulders at 634, 613 and 579 cm−1 (China) and 611 and 596 cm−1 (Czech) are attributed to the ν4 (δ) (PO4)3− bending vibrations and those at 507, 494 and 464 cm−1 (China) and 505 and 464 cm−1 (Czech) to the ν2 (δ) (PO4)3− bending vibrations. The Raman spectrum of the OH stretching region is complex. Raman bands and shoulders are identified at 2824, 3121, 3249, 3372, 3479 and 3602 cm−1 for plumbogummite from China, and at 3077, 3227, 3362, 3480, 3518 and 3601 cm−1 for the Czech Republic sample. These bands are assigned to the ν OH stretching modes of water molecules and hydrogen ions. Approximate O–H⋯O hydrogen bond lengths inferred from the Raman spectra vary in the range >3.2–2.62 Å (China) and >3.2–2.67 Å (Czech). The minority presence of some carbonate ions in the plumbogummite (China sample) is connected with distinctive intensity increasing of the Raman band at 1106 cm−1, in which may participate the ν1 (CO3)2− symmetric stretching vibration overlapped with phosphate stretching vibrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)4 tetrahedra, planar Cu(OH)4 groups and Ca(OH)3 polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984 cm−1 and infrared bands at 912, 955 and 998 cm−1 are assigned to stretching vibrations of tetragonal boron. The Raman band at 758 cm−1 is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400–600 cm−1 region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609 cm−1. Two infrared bands are found at 3558 and 3607 cm−1. These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501 cm−1 are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm−1, assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm−1 is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination. The intense sharp Raman band at 1053 cm−1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm−1 with a shoulder at 644 cm−1 is assigned to the ν4 vibrational modes. Intense Raman bands at 419 and 460 cm−1 are attributed to the ν2 bending modes. Intense Raman bands at 3545 and 3573 cm−1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm−1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have characterized anapaite Ca2Fe2+(PO4)2·4(H2O), a rare Ca and Fe phosphate, using a combination of electron microscopy and vibrational spectroscopy. The mineral occurs in soils and lacustrine sediments and is usually related to the diagenetic process in phosphorous rich sediments. The phosphate anion is characterized by its Raman spectrum with an intense sharp band at 943 cm-1, attributed to the ν1 PO4 3- symmetric stretching mode. Three bands at 992, 1039 and 1071 cm-1 are attributed to ν3 PO4 3-antisymmetric stretching modes. The infrared spectrum of anapaite shows complexity with a series of overlapping bands. Water in the structure of anapaite is observed by OH stretching vibrations at 2777, 3022 and 3176 cm-1 (Raman) and 2744, 3014 and 3096 cm-1 (infrared). The position of these bands provides evidence for the strong hydrogen bonding of water in the anapaite structure and contributes to the stability of the mineral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research was undertaken on phosphophyllite sample from the Hagendorf Süd pegmatite, Bavaria, Germany. Chemical analysis was carried out by Scanning Electron Microscope in the EDS mode and indicates a zinc and iron phosphate with partial substitution of manganese, which partially replaced iron. The calculated chemical formula of the studied sample was determined to be: Zn2(Fe0.65, Mn0.35)P1.00(PO4)2- �4(H2O). The intense Raman peak at 995 cm�1 is assigned to the m1 PO3� 4 symmetric stretching mode and the two Raman bands at 1073 and 1135 cm�1 to the m3 PO3� 4 antisymmetric stretching modes. The m4 PO3� 4 bending modes are observed at 505, 571, 592 and 653 cm�1 and the m2 PO3� 4 bending mode at 415 cm�1. The sharp Raman band at 3567 cm�1 attributed to the stretching vibration of OH units brings into question the actual formula of phosphophyllite. Vibrational spectroscopy enables an assessment of the molecular structure of phosphophyllite to be assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The arrojadite-(KFe) mineral has been analyzed using a combination of scanning electron microscopy and a combination of Raman and infrared spectroscopy. The origin of the mineral is Rapid Creek sedimentary phosphatic iron formation, northern Yukon. The formula of the mineral was determined as K2.06Na2Ca0.89Na3.23(Fe7.82Mg4.40Mn0.78)Σ13.00Al1.44(PO4)10.85(PO3OH0.23)(OH)2. The complexity of the mineral formula is reflected in the spectroscopy. Raman bands at 975, 991 and 1005 cm−1 with shoulder bands at 951 and 1024 cm−1 are assigned to the View the MathML source ν1 symmetric stretching modes. The Raman bands at 1024, 1066, 1092, 1123, 1148 and 1187 cm−1 are assigned to the View the MathML source ν3 antisymmetric stretching modes. A series of Raman bands observed at 540, 548, 557, 583, 604, 615 and 638 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The ν2 PO4 and H2PO4 bending modes are observed at 403, 424, 449, 463, 479 and 513 cm−1. Hydroxyl and water stretching bands are readily observed. Vibrational spectroscopy enables new information about the complex phosphate mineral arrojadite-(KFe) to be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phosphate mineral leucophosphite K(Fe2)3þ(PO4)2(OH) · 2H2O has been characterized by SEM-EDS, Raman, and infrared spectro- scopic measurements. The mineral is predominantly a K and Fe phosphate with some minor substitution of Al in the Fe3þ site. Raman bands at 994 and 1058 cm-1 are assigned to the symmetric stretching modes of PO3- and HPO2- units. The Raman bands at 1104, 1135, and 1177 cm-1 are assigned to the PO3- and HPO2- antisymmetric stretching modes. Raman and infrared spectra in the 2600–3800 cm-1 region show a complex set of overlapping bands, which may be resolved into the component bands. The Raman bands observed at 3325, 3355, and 3456 cm-1 are attributed to water stretching vibrations, and in the infrared spectrum, bands at 3237, 3317, and 3453 cm-1 are assigned to water stretching bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral kovdorskite Mg2PO4(OH)�3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm�1 attributed to the PO3� 4 m1 symmetric stretching mode. Raman bands at 1057 and 1089 cm�1 are attributed to the PO3�4 m3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm�1 are assigned to the PO3�4 m2 bending modes. Raman bands at 536, 546 and 574 cm�1 are assigned to the PO3�4 m4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm�1 assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm�1 are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)�3H2O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.