685 resultados para Strengthening Steel Tube


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores several important aspects of the management of new product development (NPD) in the Chinese steel industry. Specifically it explores NPD success factors, the importance of management functions to new product success and measures of new product success from the perspective of the industry's practitioners. Based on a sample of 190 industrial practitioners from 18 Chinese steel companies, the study provides a mixed picture as China makes the transition from a centrally-controlled to market-based economy. On one hand, respondents ranked understanding users' needs as the most important factor influencing the performance of the new products. Further, formulating new product strategy and strengthening market research are perceived as the most important managerial functions in NPD. However, technical performance measures are regarded as more important and are more widely used in industry than market-based or financial measures of success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the coupled effect of temperature and silica fume addition on rheological, mechanical behaviour and porosity of grouts based on CEMI 42.5R, proportioned with a polycarboxylate-based high range water reducer. Preliminary tests were conducted to focus on the grout best able to fill a fibrous network since the goal of this study was to develop an optimized grout able to be injected in a mat of steel fibers for concrete strengthening. The grout composition was developed based on criteria for fresh state and hardened state properties. For a CEMI 42.5R based grout different high range water reducer dosages (0%, 0.2%, 0.4%, 0.5%, 0.7%) and silica fume (SF) dosages (0%, 2%, 4%) were tested (as replacement of cement by mass). Rheological measurements were used to investigate the effect of polycarboxylates (PCEs) and SF dosage on grout properties, particularly its workability loss, as the mix was to be injected in a matrix of steel fibers for concrete jacketing. The workability behaviour was characterized by the rheological parameters yield stress and plastic viscosity (for different grout temperatures and resting times), as well as the procedures of mini slump cone and funnel flow time. Then, further development focused only on the best grout compositions. The cement substitution by 2% of SF exhibited the best overall behaviour and was considered as the most promising compared to the others compositions tested. Concerning the fresh state analysis, a significant workability loss was detected if grout temperature increased above 35 degrees C. Below this temperature the grout presented a self-levelling behaviour and a life time equal to 45 min. In the hardened state, silica fumes increased not only the grout's porosity but also the grout's compressive strength at later ages, since the pozzolanic contribution to the compressive strength does not occur until 28 d and beyond. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique was developed for producing thin panels of a cement based material reinforced with relatively high content of steel fibres originated from the industry of tyre recycling. Flexural tests with notched and un-notched specimens were carried out to characterize the mechanical properties of this Fibre Reinforced Cement Composite (FRCC) and the results are presented and discussed. The values of the fracture mode I parameters of the developed FRCC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To appraise the potentialities of these FRCC panels for the increase of the shear capacity of reinforced (RC) beams, numerical research was performed on the use of developed FRCC panel for shear reinforcement by applying the panels in the lateral faces of RC beams deficiently reinforced in shear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for upgrading a large number of understrength and obsolete bridges in the United States has been well documented in the literature. Through the performance of several Iowa DOT projects, the concept of strengthening bridges (simple and continuous spans) by post-tensioning has been developed. The purpose of this project was to investigate two additional strengthening alternatives that may be more efficient than post-tensioning in certain situations. The research program for each strengthening scheme included a literature review, laboratory testing of the strengthening scheme, and a finite-element analysis of the scheme. For clarity the two strengthening schemes are presented separately. In Part 1 of this report, the strengthening of existing steel stringers in composite steel beam concrete-deck bridges by providing partial end restraint was shown to be feasible. Part 2 of this report summarizes the research that was undertaken to strengthen the negative moment regions of continuous, composite bridges. Two schemes were investigated: post-compression of stringers and superimposed trusses within the stringers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report contains an evaluation and design manual for strengthening and replacing low volume steel stringer and timber stringer bridges. An advisory panel consisting of county and municipal engineers provided direction for the development of the manual. NBI bridge data, along with results from questionnaires sent to county and municipal engineers were used to formulate the manual. Types of structures shown to have the greatest need for cost-effective strengthening methods are steel stringer and timber stringer bridges. Procedures for strengthening these two types of structures have been developed. Various types of replacement bridges have also been included so that the most cost effective solution for a deficient bridge may be obtained. The key results of this study is an extensive compilation, which can be used by county engineers, of the most effective techniques for strengthening deficient existing bridges. The replacement bridge types included have been used in numerous low volume applications in surrounding states, as well as in Iowa. An economic analysis for determining the cost-effectiveness of the various strengthening methods and replacement bridges is also an important part of the manual. Microcomputer spreadsheet software for several of the strengthening methods, types of replacement bridges and for the economic analysis has been developed, documented and presented in the manual. So the manual, Chp. 3 of the final report, can be easily located, blue divider pages have been inserted to delineate the manual from the rest of the report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problems with unknown bridge foundations in Iowa are often associated with timber substructures. Timber piles are subject to biological and physical deterioration, which makes quantifying in-service pile capacity difficult. Currently there are no reliable means to estimate the residual carrying capacity of an in-service deteriorated pile; and thus, the overall safety of the bridge cannot be determined. The lack of reliable evaluation methods can lead to conservative and costly maintenance practices. This research study was undertaken to investigate procedures for assessing bridge substructures, and evaluating procedures for rehabilitating/strengthening/replacing inadequate substructure components. The report includes an extensive literature review, a field reconnaissance study of 49 bridges, a survey of substructure problems from the perspective of County Engineers, a laboratory study aiming to correlate nondestructive tests to residual pile strength and stiffness values, nondestructive and destructive load tests for 6 bridges with poor substructures, and finally a laboratory study evaluating selected repair methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.