975 resultados para Stochastic Translog Cost Frontier
Resumo:
The urban waterfront may be regarded as the littoral frontier of human settlement. Typically, over the years, it advances, sometimes retreats, where terrestrial and aquatic processes interact and frequently contest this margin of occupation. Because most towns and cities are sited beside water bodies, many of these urban centers on or close to the sea, their physical expansion is constrained by the existence of aquatic areas in one or more directions from the core. It is usually much easier for new urban development to occur along or inland from the waterfront. Where other physical constraints, such as rugged hills or mountains, make expansion difficult or expensive, building at greater densities or construction on steep slopes is a common response. This kind of development, though technically feasible, is usually more expensive than construction on level or gently sloping land, however. Moreover, there are many reasons for developing along the shore or riverfront in preference to using sites further inland. The high cost of developing existing dry land that presents serious construction difficulties is one reason for creating new land from adjacent areas that are permanently or periodically under water. Another reason is the relatively high value of artificially created land close to the urban centre when compared with the value of existing developable space at a greater distance inland. The creation of space for development is not the only motivation for urban expansion into aquatic areas. Commonly, urban places on the margins of the sea, estuaries, rivers or great lakes are, or were once, ports where shipping played an important role in the economy. The demand for deep waterfronts to allow ships to berth and for adjacent space to accommodate various port facilities has encouraged the advance of the urban land area across marginal shallows in ports around the world. The space and locational demands of port related industry and commerce, too, have contributed to this process. Often closely related to these developments is the generation of waste, including domestic refuse, unwanted industrial by-products, site formation and demolition debris and harbor dredgings. From ancient times, the foreshore has been used as a disposal area for waste from nearby settlements, a practice that continues on a huge scale today. Land formed in this way has long been used for urban development, despite problems that can arise from the nature of the dumped material and the way in which it is deposited. Disposal of waste material is a major factor in the creation of new urban land. Pollution of the foreshore and other water margin wetlands in this way encouraged the idea that the reclamation of these areas may be desirable on public health grounds. With reference to examples from various parts of the world, the historical development of the urban littoral frontier and its effects on the morphology and character of towns and cities are illustrated and discussed. The threat of rising sea levels and the heritage value of many waterfront areas are other considerations that are addressed.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
The pertinence of this book cannot be overemphasised. The world’s refugee crisis has reached a two‐decade high with the United Nations recently announcing that ‘displacement is the new 21st century challenge’ (UNHCR 2013). The transnational movement of dislocated peoples fleeing conflict, persecution and poverty is a global responsibility requiring nation states to collaborate for humanitarian resolutions embedded in human rights. However, in times of human rights expansionism, and the relaxation of borders for maximising free‐trade and fiscal prosperity, the movement of people experiencing immense abuse and deprivation has witnessed an increase in draconian regulation within discourses of intolerance and deterrence. Weber and Pickering cogently and emphatically emphasise the human cost of inhumane and populist government immigration and border‐entry polices underpinned by ideologies of retribution, suspicion, and demonisation. It is a moving and engaging narrative: a book that exposes state prejudice and abuse, whilst advocating for the victims who undertake perilous journeys in search of safety from lives of violence and persecution. Moreover, it is a book that pushes ideological boundaries and seeks new criminological horizons, for which the authors must be sincerely congratulated. It is a text of innovation, inspired thinking and long lasting criminological value.
Resumo:
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.
Resumo:
Performance guarantees for online learning algorithms typically take the form of regret bounds, which express that the cumulative loss overhead compared to the best expert in hindsight is small. In the common case of large but structured expert sets we typically wish to keep the regret especially small compared to simple experts, at the cost of modest additional overhead compared to more complex others. We study which such regret trade-offs can be achieved, and how. We analyse regret w.r.t. each individual expert as a multi-objective criterion in the simple but fundamental case of absolute loss. We characterise the achievable and Pareto optimal trade-offs, and the corresponding optimal strategies for each sample size both exactly for each finite horizon and asymptotically.
Resumo:
Japan's fishery harvest peaked in the late 1980s. To limit the race for fish, each fisherman could be provided with specific catch limits in the form of individual transferable quotas (ITQs). The market for ITQs would also help remove the most inefficient fishers. In this article we estimate the potential cost reduction associated with catch limits, and find that about 300 billion yen or about 3 billion dollars could be saved through the allocation and trading of individual-specific catch shares.
Resumo:
In this paper, the random stochastic frontier model is used to estimate the technical efficiency of Japanese airports, with regulation and heterogeneity included in the variables. The airports are ranked according to their productivity for the period 1987-2005 and homogeneous and heterogeneous variables in the cost function are disentangled. Policy implications are derived.
Resumo:
In this paper, the random stochastic frontier model is used to estimate the technical efficiency of Japanese steam power generation companies taking into regulation and pollution. The companies are ranked according to their productivity for the period 1976-2003 and homogenous and heterogeneous variables in the cost function are disentangled. Policy implication is derived.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
Summary. Interim analysis is important in a large clinical trial for ethical and cost considerations. Sometimes, an interim analysis needs to be performed at an earlier than planned time point. In that case, methods using stochastic curtailment are useful in examining the data for early stopping while controlling the inflation of type I and type II errors. We consider a three-arm randomized study of treatments to reduce perioperative blood loss following major surgery. Owing to slow accrual, an unplanned interim analysis was required by the study team to determine whether the study should be continued. We distinguish two different cases: when all treatments are under direct comparison and when one of the treatments is a control. We used simulations to study the operating characteristics of five different stochastic curtailment methods. We also considered the influence of timing of the interim analyses on the type I error and power of the test. We found that the type I error and power between the different methods can be quite different. The analysis for the perioperative blood loss trial was carried out at approximately a quarter of the planned sample size. We found that there is little evidence that the active treatments are better than a placebo and recommended closure of the trial.
Resumo:
Two prerequisites for realistically embarking upon an eradication programme are that cost-benefit analysis favours this strategy over other management options and that sufficient resources are available to carry the programme through to completion. These are not independent criteria, but it is our view that too little attention has been paid to estimating the investment required to complete weed eradication programmes. We deal with this problem by using a two-pronged approach: 1) developing a stochastic dynamic model that provides an estimation of programme duration; and 2) estimating the inputs required to delimit a weed incursion and to prevent weed reproduction over a sufficiently long period to allow extirpation of all infestations. The model is built upon relationships that capture the time-related detection of new infested areas, rates of progression of infestations from the active to the monitoring stage, rates of reversion of infestations from the monitoring to active stage, and the frequency distribution of time since last detection for all infestations. This approach is applied to the branched broomrape (Orobanche ramosa) eradication programme currently underway in South Australia. This programme commenced in 1999 and currently 7450 ha are known to be infested with the weed. To date none of the infestations have been eradicated. Given recent (2008) levels of investment and current eradication methods, model predictions are that it would take, on average, an additional 73 years to eradicate this weed at an average additional cost (NPV) of $AU67.9m. When the model was run for circumstances in 2003 and 2006, the average programme duration and total cost (NPV) were predicted to be 159 and 94 years, and $AU91.3m and $AU72.3m, respectively. The reduction in estimated programme length and cost may represent progress towards the eradication objective, although eradication of this species still remains a long term prospect.
Location of concentrators in a computer communication network: a stochastic automation search method
Resumo:
The following problem is considered. Given the locations of the Central Processing Unit (ar;the terminals which have to communicate with it, to determine the number and locations of the concentrators and to assign the terminals to the concentrators in such a way that the total cost is minimized. There is alao a fixed cost associated with each concentrator. There is ail upper limit to the number of terminals which can be connected to a concentrator. The terminals can be connected directly to the CPU also In this paper it is assumed that the concentrators can bo located anywhere in the area A containing the CPU and the terminals. Then this becomes a multimodal optimization problem. In the proposed algorithm a stochastic automaton is used as a search device to locate the minimum of the multimodal cost function . The proposed algorithm involves the following. The area A containing the CPU and the terminals is divided into an arbitrary number of regions (say K). An approximate value for the number of concentrators is assumed (say m). The optimum number is determined by iteration later The m concentrators can be assigned to the K regions in (mk) ways (m > K) or (km) ways (K>m).(All possible assignments are feasible, i.e. a region can contain 0,1,…, to concentrators). Each possible assignment is assumed to represent a state of the stochastic variable structure automaton. To start with, all the states are assigned equal probabilities. At each stage of the search the automaton visits a state according to the current probability distribution. At each visit the automaton selects a 'point' inside that state with uniform probability. The cost associated with that point is calculated and the average cost of that state is updated. Then the probabilities of all the states are updated. The probabilities are taken to bo inversely proportional to the average cost of the states After a certain number of searches the search probabilities become stationary and the automaton visits a particular state again and again. Then the automaton is said to have converged to that state Then by conducting a local gradient search within that state the exact locations of the concentrators are determined This algorithm was applied to a set of test problems and the results were compared with those given by Cooper's (1964, 1967) EAC algorithm and on the average it was found that the proposed algorithm performs better.
Resumo:
The objectives of this study were to make a detailed and systematic empirical analysis of microfinance borrowers and non-borrowers in Bangladesh and also examine how efficiency measures are influenced by the access to agricultural microfinance. In the empirical analysis, this study used both parametric and non-parametric frontier approaches to investigate differences in efficiency estimates between microfinance borrowers and non-borrowers. This thesis, based on five articles, applied data obtained from a survey of 360 farm households from north-central and north-western regions in Bangladesh. The methods used in this investigation involve stochastic frontier (SFA) and data envelopment analysis (DEA) in addition to sample selectivity and limited dependent variable models. In article I, technical efficiency (TE) estimation and identification of its determinants were performed by applying an extended Cobb-Douglas stochastic frontier production function. The results show that farm households had a mean TE of 83% with lower TE scores for the non-borrowers of agricultural microfinance. Addressing institutional policies regarding the consolidation of individual plots into farm units, ensuring access to microfinance, extension education for the farmers with longer farming experience are suggested to improve the TE of the farmers. In article II, the objective was to assess the effects of access to microfinance on household production and cost efficiency (CE) and to determine the efficiency differences between the microfinance participating and non-participating farms. In addition, a non-discretionary DEA model was applied to capture directly the influence of microfinance on farm households production and CE. The results suggested that under both pooled DEA models and non-discretionary DEA models, farmers with access to microfinance were significantly more efficient than their non-borrowing counterparts. Results also revealed that land fragmentation, family size, household wealth, on farm-training and off farm income share are the main determinants of inefficiency after effectively correcting for sample selection bias. In article III, the TE of traditional variety (TV) and high-yielding-variety (HYV) rice producers were estimated in addition to investigating the determinants of adoption rate of HYV rice. Furthermore, the role of TE as a potential determinant to explain the differences of adoption rate of HYV rice among the farmers was assessed. The results indicated that in spite of its much higher yield potential, HYV rice production was associated with lower TE and had a greater variability in yield. It was also found that TE had a significant positive influence on the adoption rates of HYV rice. In article IV, we estimated profit efficiency (PE) and profit-loss between microfinance borrowers and non-borrowers by a sample selection framework, which provided a general framework for testing and taking into account the sample selection in the stochastic (profit) frontier function analysis. After effectively correcting for selectivity bias, the mean PE of the microfinance borrowers and non-borrowers were estimated at 68% and 52% respectively. This suggested that a considerable share of profits were lost due to profit inefficiencies in rice production. The results also demonstrated that access to microfinance contributes significantly to increasing PE and reducing profit-loss per hectare land. In article V, the effects of credit constraints on TE, allocative efficiency (AE) and CE were assessed while adequately controlling for sample selection bias. The confidence intervals were determined by the bootstrap method for both samples. The results indicated that differences in average efficiency scores of credit constrained and unconstrained farms were not statistically significant although the average efficiencies tended to be higher in the group of unconstrained farms. After effectively correcting for selectivity bias, household experience, number of dependents, off-farm income, farm size, access to on farm training and yearly savings were found to be the main determinants of inefficiencies. In general, the results of the study revealed the existence substantial technical, allocative, economic inefficiencies and also considerable profit inefficiencies. The results of the study suggested the need to streamline agricultural microfinance by the microfinance institutions (MFIs), donor agencies and government at all tiers. Moreover, formulating policies that ensure greater access to agricultural microfinance to the smallholder farmers on a sustainable basis in the study areas to enhance productivity and efficiency has been recommended. Key Words: Technical, allocative, economic efficiency, DEA, Non-discretionary DEA, selection bias, bootstrapping, microfinance, Bangladesh.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.