928 resultados para Stochastic Model


Relevância:

70.00% 70.00%

Publicador:

Resumo:

El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There has been a recent burst of activity in the atmosphere/ocean sciences community in utilizing stable linear Langevin stochastic models for the unresolved degree of freedom in stochastic climate prediction. Here several idealized models for stochastic climate modeling are introduced and analyzed through unambiguous mathematical theory. This analysis demonstrates the potential need for more sophisticated models beyond stable linear Langevin equations. The new phenomena include the emergence of both unstable linear Langevin stochastic models for the climate mean and the need to incorporate both suitable nonlinear effects and multiplicative noise in stochastic models under appropriate circumstances. The strategy for stochastic climate modeling that emerges from this analysis is illustrated on an idealized example involving truncated barotropic flow on a beta-plane with topography and a mean flow. In this example, the effect of the original 57 degrees of freedom is well represented by a theoretically predicted stochastic model with only 3 degrees of freedom.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rodenticide use in agriculture can lead to the secondary poisoning of avian predators. Currently the Australian sugarcane industry has two rodenticides, Racumin® and Rattoff®, available for in-crop use but, like many agricultural industries, it lacks an ecologically-based method of determining the potential secondary poisoning risk the use of these rodenticides poses to avian predators. The material presented in this thesis addresses this by: a. determining where predator/prey interactions take place in sugar producing districts; b. quantifying the amount of rodenticide available to avian predators and the probability of encounter; and c. developing a stochastic model that allows secondary poisoning risk under various rodenticide application scenarios to be investigated. Results demonstrate that predator/prey interactions are highly constrained by environmental structure. Rodents used crops that provided high levels of canopy cover and therefore predator protection and poorly utilised open canopy areas. In contrast, raptors over-utilised areas with low canopy cover and low rodent densities, but which provided high accessibility to prey. Given this pattern of habitat use, and that industry baiting protocols preclude rodenticide application in open canopy crops, these results indicate that secondary poisoning can only occur if poisoned rodents leave closed canopy crops and become available for predation in open canopy areas. Results further demonstrate that after in-crop rodenticide application, only a small proportion of rodents available in open areas are poisoned and that these rodents carry low levels of toxicant. Coupled with the low level of rodenticide use in the sugar industry, the high toxic threshold raptors have to these toxicants and the low probability of encountering poisoned rodents, results indicate that the risk of secondary poisoning events occurring is minimal. A stochastic model was developed to investigate the effect of manipulating factors that might influence secondary poisoning hazard in a sugarcane agro-ecosystem. These simulations further suggest that in all but extreme scenarios, the risk of secondary poisoning is also minimal. Collectively, these studies demonstrate that secondary poisoning of avian predators associated with the use of the currently available rodenticides in Australian sugar producing districts is minimal. Further, the ecologically-based method of assessing secondary poisoning risk developed in this thesis has broader applications in other agricultural systems where rodenticide use may pose risks to avian predators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are useful for posterior inference in the presence of an intractable likelihood function. In the indirect inference approach to ABC the parameters of an auxiliary model fitted to the data become the summary statistics. Although applicable to any ABC technique, we embed this approach within a sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning. This methodological development was motivated by an application involving data on macroparasite population evolution modelled by a trivariate stochastic process for which there is no tractable likelihood function. The auxiliary model here is based on a beta–binomial distribution. The main objective of the analysis is to determine which parameters of the stochastic model are estimable from the observed data on mature parasite worms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ambiguity acceptance test is an important quality control procedure in high precision GNSS data processing. Although the ambiguity acceptance test methods have been extensively investigated, its threshold determine method is still not well understood. Currently, the threshold is determined with the empirical approach or the fixed failure rate (FF-) approach. The empirical approach is simple but lacking in theoretical basis, while the FF-approach is theoretical rigorous but computationally demanding. Hence, the key of the threshold determination problem is how to efficiently determine the threshold in a reasonable way. In this study, a new threshold determination method named threshold function method is proposed to reduce the complexity of the FF-approach. The threshold function method simplifies the FF-approach by a modeling procedure and an approximation procedure. The modeling procedure uses a rational function model to describe the relationship between the FF-difference test threshold and the integer least-squares (ILS) success rate. The approximation procedure replaces the ILS success rate with the easy-to-calculate integer bootstrapping (IB) success rate. Corresponding modeling error and approximation error are analysed with simulation data to avoid nuisance biases and unrealistic stochastic model impact. The results indicate the proposed method can greatly simplify the FF-approach without introducing significant modeling error. The threshold function method makes the fixed failure rate threshold determination method feasible for real-time applications.