953 resultados para Stimulate Mycorrhizal Colonization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rubber tree is a very important crop in Thailand, representing an essential source of income for farmers. In the past two decades, rubber tree plantations have been greatly expanding in unfavorable areas, where climate conditions are difficult and soil fertility is very poor. To optimize latex yields, mineral fertilizers have been widely used. A better understanding of the roles of the biological compartment in soil fertility is essential to determine alternative management practices to sustain soil fertility and optimize latex yields. Arbuscular mycorrhizal fungi (AMF) are widely recognized as beneficial for plants, mainly through their role in improving plant nutrient uptake. The objective of this study was to assess the AMF populations in rubber tree plantations and the impact of both soil characteristics and plantation age on these communities. Our results showed that all rubber trees were highly colonized, regardless of the soil structure and nutrient contents. AMF colonization was not affected by the age of the trees, suggesting that maintaining the symbiosis is likely to be beneficial at all stages. A better understanding and management of the microbial communities would contribute to maintaining or restoring soil fertility, leading to a better tree growth and optimized latex yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil aggregation is a principal ecosystem process mediated by soil biota. Collembola and arbuscular mycorrhizal (AM) fungi are important groups in the soil, and can interact in various ways. Few studies have examined collembola effects on soil aggregation, while many have quantified AM effects. Here, we asked if collembola have any effect on soil aggregation, and if they alter AM fungi-mediated effects on soil aggregation.

We carried out a factorial greenhouse study, manipulating the presence of both collembola and AM fungi, using two different plant species, Sorghum vulgare and Daucus carota. We measured root length and biomass, AMF (and non-AMF) soil hyphal length, root colonization, and collembolan populations, and quantified water stable soil aggregates (WSA) in four size classes.

Soil exposed to growth of AMF hyphae and collembola individually had higher WSA than control treatments. Moreover, the interaction effects between AMF and collembola were significant, with nonadditive increases in the combined application compared to the single treatments.

Our findings show that collembola can play a crucial role in maintaining ecological sustainability through promoting soil aggregation, and point to the importance of considering organism interactions in understanding formation of soil structure. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ericoid mycorrhizas are believed to improve N nutrition of many ericaceous plant species that typically occur in habitats with impoverished nutrient status, by releasing amino acids from organic N forms. Despite the ubiquity of mycorrhizal formation the mechanisms and regulation of nutrient transport in mycorrhizal associations are poorly understood. We used an electrophysiological approach to study how amino acid transport characteristics of Calluna vulgaris were affected by colonization with the ericoid mycorrhiza fungus Hymenoscyphus ericae. Both the Vmax and Km parameters of amino acid uptake were affected by fungal colonization in a manner consistent with an increased availability of amino acid to the plant. The ecophysiological significance of altered amino acid transport in colonized root cells of C. vulgaris is discussed. © New Phytologist (2002).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of arbuscular mycorrhizal fungi (AMF) in arsenate resistance in arbuscular mycorrhizal associations is investigated here for two Glomus spp. isolated from the arsenate-resistant grass Holcus lanatus. Glomus mosseae and Glomus caledonium were isolated from H. lanatus growing on an arsenic-contaminated mine-spoil soil. The arsenate resistance of spores was compared with nonmine isolates using a germination assay. Short-term arsenate influx into roots and long-term plant accumulation of arsenic by plants were also investigated in uninfected arsenate resistant and nonresistant plants and in plants infected with mine and nonmine AMF. Mine AMF isolates were arsenate resistant compared with nonmine isolates. Resistant and nonresistant G. mosseae both suppressed high-affinity arsenate/phosphate transport into the roots of both resistant and nonresistant H. lanatus. Resistant AMF colonization of resistant H. lanatus growing in contaminated mine spoil reduced arsenate uptake by the host. We conclude that AMF have evolved arsenate resistance, and conferred enhanced resistance on H. lanatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground ‘tree talk’ is a foundational process in the complex adaptive nature of forest ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A greenhouse experiment was installed with bait cultures to extract the AMF species present in a rhizosphere soil sample of a native Araucaria angustifolia forest in Campos do Jordao, Brazil. The experimental design was completely randomized, with four increasing phosphorus doses (0, 20, 50, and 150 mg kg(-1), as triple superphosphate), with five replicates, the bait plant was araucaria, and all pots were inoculated with 100 g of rhizospheric soil collected in an araucaria forest. After twelve months the spores were extracted, counted and identified, and the percent root colonization was also determined. When taking all four P doses into account, eleven AMF species could be identified: Acaulospora bireticulata, Acaulospora morrowiae, Acaulospora sp., Entrophospora colombiana, Gigaspora margarita, Glomus diaphanum, Glomus etunicatum, Glomus macrocarpum, Scutellospora calospora, Scutellospora gilmorei, and Scutellospora pellucida. There was no effect of the P dose on the total amount of spores neither on the percent root colonization. However, the correspondence analysis showed that the different AMF species were selectively associated mostly to either one or another P dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Dominant plant functional types (PFTs) are expected to be primary determinants of communities of other above- and below-ground organisms. Here, we report the effects of the experimental removal of different PFTs on arbuscular mycorrhizal fungi (AMF) communities in a shrubland ecosystem in central Argentina. 2. On the basis of the biomass-ratio hypothesis and plant resource use strategy theory, we expected the effect of removal of PFTs on AMF colonization and spores to be proportional to the biomass removed and to be stronger when more conservative PFTs were removed. The treatments applied were: undisturbed control (no plant removed), disturbed control (mechanical disturbance), no shrub (removal of deciduous shrubs), no perennial forb (removal of perennial forbs), no graminoid (removal of graminoids) and no annual forb (removal of annual forbs). AMF colonization was assessed after 5,17 and 29 months. Total density of AMF spores, richness and evenness of morpho-taxa, and AMF functional groups were quantified after 5,17,29,36 and 39 months. 3. Five months after the initial removal we found a significant reduction in total AMF colonization in all plots subjected to PFT removals and in the disturbed control plots, as compared with the undisturbed controls. This effect disappeared afterwards and no subsequent effect on total colonization and colonization by arbuscules was observed. In contrast, a significant increase in colonization by vesicles was observed in months 17 and 29, mainly in no graminoid plots. In general, treatments did not significantly affect AMF spores in the soil. On the other hand, no annual forb promoted transient (12-18 months) higher ammonia availability, and no shrub promoted lower nitrate availability in the longer term (24-28 months). 4. Synthesis. Our experiment, the first to investigate the effects of the removal of different PFTs on AMF communities in natural ecosystems, indicates that AMF communities are resilient to changes in the soil and in the functional composition of vegetation. Furthermore, it does not provide consistent evidence in support of the biomass-ratio hypothesis or differential trait-based direct or indirect effects of different PFTs on AMF in this particular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. RESULTS: We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization. CONCLUSIONS: Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addressed the effects of salinity and pot size on the interaction between leguminous plant hosts and arbuscular mycorrhizal fungi in four pine rockland soils using a shade house trap-plant experiment. Little is known about the belowground diversity of pine rocklands and the interactions between aboveground and belowground biota – an increased understanding of these interactions could lead to improved land management decisions, conservation and restoration efforts. Following twelve weeks of growth, plants were measured for root and shoot dry biomass and percent colonization by arbuscular mycorrhizal fungi. Overall, arbuscular mycorrhizal fungi had positive fitness effects on the four legume species (Cajanus cajan, Chamaecrista fasciculata, Tephrosia angustissima and Abrus precatorius), improving their growth rate, shoot and root biomass; pot size influenced plant-fungal interactions; and percent colonization by arbuscular mycorrhizal fungi was influenced by soil type as well as salinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.