884 resultados para Step potentials
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.
Resumo:
This short article summarises some of the proposed reforms to surrogacy laws in Queensland, suggested by the Liberal National Party in 2012. The paper outlines some of the main objections that could be voiced in response to the proposed changes to the law.
Resumo:
Tacit knowledge sharing amongst physicians, such as the sharing of clinical experiences, skills, or know-how, or know-whom, is known to have a significant impact on the quality of medical diagnosis and decisions. This paper posits that social media can provide new opportunities for tacit knowledge sharing amongst physicians, and demonstrates this by presenting findings from a review of relevant literature and a survey conducted with physicians. Semi-structured interviews were conducted with ten physicians from around the world who were active users of social media. Initial thematic analysis revealed eight themes as potential contributions of social web tools to facilitate tacit knowledge flow amongst physicians. The emergent themes are defined, linked to the literature, and supported by instances of interview transcripts. Findings presented here are preliminary, and final results will be reported after accomplishing all phases of data collection and analysis.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
EHealth systems promise enviable benefits and capabilities for healthcare. But, the technologies that make these capabilities possible brings with them undesirable drawback such as information security related threats which need to be appropriately addressed. Lurking in these threats are patient privacy concerns. Fulfilling these privacy concerns have proven to be difficult since they often conflict with information requirements of care providers. It is important to achieve a proper balance between these requirements. We believe that information accountability can achieve this balance. In this paper we introduce accountable-eHealth systems. We will discuss how our designed protocols can successfully address the aforementioned requirement. We will also compare characteristics of AeH systems with Australia’s PCEHR system and identify similarities and highlight the differences and the impact those differences would have to the eHealth domain.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.
Resumo:
Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.
Resumo:
eHealth systems promise enviable benefits and capabilities for healthcare delivery. However, the technologies that make these capabilities possible introduce undesirable drawbacks such as information security related threats, which need to be appropriately addressed. Lurking in these threats are information privacy concerns. Addressing them has proven to be difficult because they often conflict with information access requirements of healthcare providers. Therefore, it is important to achieve an appropriate balance between these requirements. We contend that information accountability (IA) can achieve this balance. In this paper, we introduce accountable-eHealth (AeH) systems, which are eHealth systems that utilise IA as a measure of information privacy. We discuss how AeH system protocols can successfully achieve the aforementioned balance of requirements. As a means of implementation feasibility, we compare characteristics of AeH systems with Australia’s Personally Controlled Electronic Health Record (PCEHR) sys-tem and identify similarities and highlight the differences and the impact those differences would have to the eHealth domain.
Resumo:
In response to a growing interest in art and science interactions and transdisciplinary research strategies, this research project examines the critical and conceptual affordances of ArtScience practice and outlines a new experiential methodology for practice-lead research using a framework of creative becoming. In doing so, the study contributes to the field of ArtScience and transdisciplinary practice, by providing new strategies for creative development and critical enquiry across art and science.
Resumo:
INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support) aims to monitor and benchmark the healthiness of food environments globally. In order to assess the impact of food environments on population diets, it is necessary to monitor population diet quality between countries and over time. This paper reviews existing data sources suitable for monitoring population diet quality, and assesses their strengths and limitations. A step-wise framework is then proposed for monitoring population diet quality. Food balance sheets (FBaS), household budget and expenditure surveys (HBES) and food intake surveys are all suitable methods for assessing population diet quality. In the proposed ‘minimal’ approach, national trends of food and energy availability can be explored using FBaS. In the ‘expanded’ and ‘optimal’ approaches, the dietary share of ultra-processed products is measured as an indicator of energy-dense, nutrient-poor diets using HBES and food intake surveys, respectively. In addition, it is proposed that pre-defined diet quality indices are used to score diets, and some of those have been designed for application within all three monitoring approaches. However, in order to enhance the value of global efforts to monitor diet quality, data collection methods and diet quality indicators need further development work.
Resumo:
This paper describes the theory and practice for a stable haptic teleoperation of a flying vehicle. It extends passivity-based control framework for haptic teleoperation of aerial vehicles in the longest intercontinental setting that presents great challenges. The practicality of the control architecture has been shown in maneuvering and obstacle-avoidance tasks over the internet with the presence of significant time-varying delays and packet losses. Experimental results are presented for teleoperation of a slave quadrotor in Australia from a master station in the Netherlands. The results show that the remote operator is able to safely maneuver the flying vehicle through a structure using haptic feedback of the state of the slave and the perceived obstacles.
Resumo:
The need for native Information Systems (IS) theories has been discussed by several prominent scholars. Contributing to their conjectural discussion, this research moves towards theorizing IS success as a native theory for the discipline. Despite being one of the most cited scholarly works to-date, IS success of DeLone and McLean (1992) has been criticized by some for lacking focus on the theoretical approach. Following theory development frameworks, this study improves the theoretical standing of IS success by minimizing interaction and inconsistency. The empirical investigation of theorizing IS success includes 1396 respondents, gathered through six surveys and a case study. The respondents represent 70 organisations, multiple Information Systems, and both private and public sector organizations.