949 resultados para Stationary Probability
Resumo:
We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the frequency of axillary metastasis in women with tubular carcinoma (TC) of the breast. Women who underwent axillary dissection for TC in the Western Sydney area (1984-1995) were identified retrospectively through a search of computerized records. A centralized pathology review was performed and tumours were classified as pure tubular (22) or mixed tubular (nine), on the basis of the invasive component containing 90 per cent or more, or 75-90 per cent tubule formation respectively. A Medline search of the literature was undertaken to compile a collective series (20 studies with a total of 680 patients) to address the frequency of nodal involvement in TC. A quantitative meta-analysis was used to combine the results of these studies. The overall frequency of nodal metastasis was five of 31 (16 per cent); one of 22 pure tubular and four of nine mixed tumours (P = 0.019). None of the tumours with a diameter of 10 mm or less (n = 16) had nodal metastasis compared with five of 15 larger tumours (P = 0.018). The meta-analysis of 680 women showed an overall frequency of nodal metastasis in TC of 13.8 (95 per cent confidence interval 9.3-18.3) per cent. The frequency of nodal involvement was 6.6 (1.7-11.4) per cent in pure TC (n = 244) and 25.0 (12.5-37.6) per cent in mixed TC (n = 149). A case may be made for observing the clinically negative axilla in women with a small TC (10 mm or less in diameter).
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
PURPOSE. To assess whether baseline Glaucoma Probability Score (GPS; HRT-3; Heidelberg Engineering, Dossenheim, Germany) results are predictive of progression in patients with suspected glaucoma. The GPS is a new feature of the confocal scanning laser ophthalmoscope that generates an operator-independent, three-dimensional model of the optic nerve head and gives a score for the probability that this model is consistent with glaucomatous damage. METHODS. The study included 223 patients with suspected glaucoma during an average follow-up of 63.3 months. Included subjects had a suspect optic disc appearance and/or elevated intraocular pressure, but normal visual fields. Conversion was defined as development of either repeatable abnormal visual fields or glaucomatous deterioration in the appearance of the optic disc during the study period. The association between baseline GPS and conversion was investigated by Cox regression models. RESULTS. Fifty-four (24.2%) eyes converted. In multivariate models, both higher values of GPS global and subjective stereophotograph assessment ( larger cup-disc ratio and glaucomatous grading) were predictive of conversion: adjusted hazard ratios (95% CI): 1.31 (1.15 - 1.50) per 0.1 higher global GPS, 1.34 (1.12 - 1.62) per 0.1 higher CDR, and 2.34 (1.22 - 4.47) for abnormal grading, respectively. No significant differences ( P > 0.05 for all comparisons) were found between the c-index values ( equivalent to area under ROC curve) for the multivariate models (0.732, 0.705, and 0.699, respectively). CONCLUSIONS. GPS values were predictive of conversion in our population of patients with suspected glaucoma. Further, they performed as well as subjective assessment of the optic disc. These results suggest that GPS could potentially replace stereophotograph as a tool for estimating the likelihood of conversion to glaucoma.
Resumo:
Background: A 150 cm(3) pear-shaped gastric balloon with a 30 cm-long duodenal stem and a 7 g metallic weight at its distal end was designed and developed to facilitate weight loss by (a) delaying gastric emptying thus enhancing interprandial satiety, and (b) stimulating antral and duodenal receptors of satiation. Methods: Twenty-six patients (body mass index of 29 to 40 kg/m(2)) who failed to lose weight despite dietary intervention underwent endoscopic implantation of the balloon device. Patients were monitored for tolerance to the balloon, complications, weight loss, and compliance with a restricted caloric intake. Results: Six men and 20 women with a median body weight of 93.0kg (range, 73.5 to 119.9), median body mass index 34.3 kg/m(2) (range, 28.8 to 39.5) underwent balloon implantation for a median period of 4.0 months (range, 0.75 to 6.0). Twenty-two patients successfully complied with a 1250 to 1500 kcal daily diet restriction during the study period. Median weight reduction was 6.5 kg (range, 3.7 to 19.9). Patients with initial body weight of > 90 kg tended to loose more weight (8.1 kg) than patients weighing < 90 kg (4.5 kg) (P = 0.14). Nine patients with dwell times of 6 months lost 11.5 +/- 4.6 kg. The balloon malfunctioned in 4 patients (in I patient, the balloon leaked spontaneously but remained in the stomach and in 3 patients, the balloon migrated distally). Conclusions: Our novel balloon device may be effective in inducing weight loss by promoting compliance with a restricted caloric intake and is well tolerated due to its small size. Complications resulted from balloon rupture, which can be easily prevented by enhancements in design and use of alternative materials.
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.
Resumo:
We shall examine a model, first studied by Brockwell et al. [Adv Appl Probab 14 (1982) 709.], which can be used to describe the longterm behaviour of populations that are subject to catastrophic mortality or emigration events. Populations can suffer dramatic declines when disease, such as an introduced virus, affects the population, or when food shortages occur, due to overgrazing or fluctuations in rainfall. However, perhaps surprisingly, such populations can survive for long periods and, although they may eventually become extinct, they can exhibit an apparently stationary regime. It is useful to be able to model this behaviour. This is particularly true of the ecological examples that motivated the present study, since, in order to properly manage these populations, it is necessary to be able to predict persistence times and to estimate the conditional probability distribution of population size. We shall see that although our model predicts eventual extinction, the time till extinction can be long and the stationary exhibited by these populations over any reasonable time scale can be explained using a quasistationary distribution. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A recent study by Brook ef al. empirically tested the performance of population viability analysis (PVA) using data from 21 populations across a wide range of species. The study concluded that PVAs are good at predicting the future dynamics of populations. We suggest that this conclusion is a result of a bias in the studies that Brook et al, included in their analyses, We present arguments that PVAs can only be accurate at predicting extinction probabilities if data are extensive and reliable, and if the distribution of vital rates between individuals and years can be assumed stationary in the future, or if any changes can be accurately predicted. In particular, we note th at although catastrophes are likely to have precipitated many extinctions, estimates of the probability of catastrophes are unreliable.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Cavity QED analog of the harmonic-oscillator probability distribution function and quantum collapses
Resumo:
We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)
Resumo:
Shoaling with familiar individuals may have many benefits including enhanced escape responses or increased foraging efficiency. This study describes the results of two complimentary experiments. The first utilised a simple binary choice experiment to determine if rainbowfish (Melanotaenia spp.) preferred to shoal with familiar individuals or with strangers. The second experiment used a free range situation where familiar and unfamiliar individuals were free to intermingle and were then exposed to a predator threat. Like many other small species of fish, rainbowfish were capable of identifying and distinguishing between individuals and choose to preferentially associate with familiar individuals as opposed to strangers. Contrary to expectations. however. rainbowrish did not significantly increase their preference for familiar individuals in the presence of a stationary predator model. Griffiths [J Fish Biol (1997) 51:489-4951 conducted similar studies under semi-natural conditions examining, the shoaling preferences of European minnows and showed similar results. Both the current study and that of Griffiths were conducted using predator wary populations of fish. It is suggested that, in predator sympatric populations, the benefits of shoaling with familiar individuals are such that it always pays to stay close to familiar individuals even when the probability If predator attack is remote.