898 resultados para State-space
An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good numerical approximations to the associated optimal state estimation problems. However, in many scenarios, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard SMC methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed to perform static parameter estimation in general state-space models. We discuss the advantages and limitations of these methods. © 2009 IFAC.
Resumo:
State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. Copyright 2010 by the authors.
Resumo:
The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.
Resumo:
We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. © 2013 IEEE.
Resumo:
State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.
Resumo:
We describe the automatic synthesis of a global nonlinear controller for stabilizing a magnetic levitation system. The synthesized control system can stabilize the maglev vehicle with large initial displacements from an equilibrium, and possesses a much larger operating region than the classical linear feedback design for the same system. The controller is automatically synthesized by a suite of computational tools. This work demonstrates that the difficult control synthesis task can be automated, using programs that actively exploit knowledge of nonlinear dynamics and state space and combine powerful numerical and symbolic computations with spatial-reasoning techniques.
Resumo:
A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Resumo:
Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step-like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state-space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.
Resumo:
Iterative solvers are required for the discrete-time simulation of nonlinear behaviour in analogue distortion circuits. Unfortunately,these methods are often computationally too expensive for realtime simulation. Two methods are presented which attempt to reduce the expense of iterative solvers. This is achieved by applying information that is derived from the specific form of the non linearity.The approach is first explained through the modelling of an asymmetrical diode clipper, and further exemplified by application to the Dallas Rangemaster Treble Booster guitar pedal, which provides an initial perspective of the performance on systems with multiple nonlinearities.
Resumo:
In this thesis we consider two-dimensional (2D) convolutional codes. As happens in the one-dimensional (1D) case one of the major issues is obtaining minimal state-space realizations for these codes. It turns out that the problem of minimal realization of codes is not equivalent to the minimal realization of encoders. This is due to the fact that the same code may admit different encoders with different McMillan degrees. Here we focus on the study of minimality of the realizations of 2D convolutional codes by means of separable Roesser models. Such models can be regarded as a series connection between two 1D systems. As a first step we provide an algorithm to obtain a minimal realization of a 1D convolutional code starting from a minimal realization of an encoder of the code. Then, we restrict our study to two particular classes of 2D convolutional codes. The first class to be considered is the one of codes which admit encoders of type n 1. For these codes, minimal encoders (i.e., encoders for which a minimal realization is also minimal as a code realization) are characterized enabling the construction of minimal code realizations starting from such encoders. The second class of codes to be considered is the one constituted by what we have called composition codes. For a subclass of these codes, we propose a method to obtain minimal realizations by means of separable Roesser models.
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.