963 resultados para Srivastava code
Resumo:
This work is a MATLAB/Simulink model of a controller for a three-phase, four-wire, grid-interactive inverter. The model provides capacity for simulating the performance of power electroinic hardware, as well as code generation for an embedded controller. The implemented hardware topology is a three-leg bridge with a neutral connection to the centre-tap of the DC bus. An LQR-based current controller and MAF-based phase detector are implemented. The model is configured for code generation for a Texas Instruments TMS320F28335 Digital Signal Processor (DSP).
Resumo:
The Code of Banking Practice is one of the oldest examples of consumer protection provided through self-regulation in the Australian financial services sector. However, since the Banking Code was first released in 1993, the volume of consumer protection legislation applying to banks has increased exponentially and parts of the Banking Code that once provided new consumer rights have now been largely superseded by legislation. In light of the increasingly complex set of laws and regulations that govern the relationship between banks and their consumer and small business customers it could be argued that the Banking Code has a limited future role. However, an analysis of the Banking Code shows that it adds to the consumer protection standards provided by legislation and can continue to facilitate improvements in the standards of subscribing banks and of other institutions in the financial services sector. Self-regulation and industry codes should continue to be part of the regulatory mix. Any regulatory changes that flow from the recent Financial System Inquiry should also facilitate and support the self-regulation role, but the government should also consider further changes to encourage improvements in industry codes and ensure that the implicit regulatory benefits that are provided, in part, because of the existence of industry codes, are made explicit and made available only to code subscribers.
Resumo:
Widening participation brings with it increasing diversity, increased variation in the level of academic preparedness (Clarke, 2011; Nelson, Clarke, & Kift 2010). Cultural capital coupled with negotiating the academic culture creates an environment based on many assumptions about academic writing and university culture. Variations in staff and student expectations relating to the teaching and learning experience is captured in a range of national and institutional data (AUSSE, CEQ, LEX). Nationally, AUSSE data (2009) indicates that communication, writing, speaking and analytic skills, staff expectations are quite a bit higher than students. The research team noted a recognisable shift in the changing cohort of students and their understanding and engagement with feedback and CRAs, as well as variations in teaching staff and student expectations. The current reality of tutor and student roles is that: - Students self select when/how they access lectures and tutorials. - Shorter tutorial times result in reduced opportunity to develop rapport with students. - CRAs are not always used consistently by staff (different marking styles and levels of feedback). - Marking is not always undertaken by the student’s tutor/lecturer. - Student support services might be recommended to students once a poor grade has been given. Students can perceive this as remedial and a further sense of failure. - CRA sheet has a mark /grade attached to it. Stigma attached to low mark. Hard to focus on the CRA feedback with a poor mark etched next to it. - Limited opportunities for sessionals to access professional development to assist with engaging students and feedback. - FYE resources exist, however academic time is a factor in exploring and embedding these resources. Feedback is another area with differing expectations and understandings. Sadler (2009) contends that students are not equipped to decode the statements properly. For students to be able to apply feedback, they need to understand the meaning of the feedback statement. They also need to identify, the particular aspects of their work that need attention. The proposed Checklist/guide would be one page and submitted with each assessment piece thereby providing an interface to engage students and tutors in managing first year understandings and expectations around CRAs, feedback, and academic practice.
Resumo:
A hot billet in contact with relatively cold dies undergoes rapid cooling in the forging operation. This may give rise to unfilled cavities, poor surface finish and stalling of the press. A knowledge of billet-die temperatures as a function of time is therefore essential for process design. A computer code using finite difference method is written to estimate such temperature histories and validated by comparing the predicted cooling of an integral die-billet configuration with that obtained experimentally.
Resumo:
WinBUGS code and data to reproduce our network meta-analysis from "Control strategies to prevent total hip replacement-related infections: a systematic review and mixed treatment comparison" published in BMJ Open.
Resumo:
A computer code is developed for the numerical prediction of natural convection in rectangular two-dimensional cavities at high Rayleigh numbers. The governing equations are retained in the primitive variable form. The numerical method is based on finite differences and an ADI scheme. Convective terms may be approximated with either central or hybrid differencing for greater stability. A non-uniform grid distribution is possible for greater efficiency. The pressure is dealt with via a SIMPLE type algorithm and the use of a fast elliptic solver for the solenoidal velocity correction field significantly reduces computing times. Preliminary results indicate that the code is reasonably accurate, robust and fast compared with existing benchmarks and finite difference based codes, particularly at high Rayleigh numbers. Extension to three-dimensional problems and turbulence studies in similar geometries is readily possible and indicated.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.
Resumo:
Examines the symbolic significance of major events and their security provision in the historical and contemporary context of the European Code of Police Ethics. Stresses the potential of major events to set new practical policing and security standards of technology and in doing so necessitiate the maintenance of professional ethical standards for policing in Europe.
Resumo:
This work describes the parallelization of High Resolution flow solver on unstructured meshes, HIFUN-3D, an unstructured data based finite volume solver for 3-D Euler equations. For mesh partitioning, we use METIS, a software based on multilevel graph partitioning. The unstructured graph used for partitioning is associated with weights both on its vertices and edges. The data residing on every processor is split into four layers. Such a novel procedure of handling data helps in maintaining the effectiveness of the serial code. The communication of data across the processors is achieved by explicit message passing using the standard blocking mode feature of Message Passing Interface (MPI). The parallel code is tested on PACE++128 available in CFD Center