266 resultados para Sprouting
Resumo:
BACKGROUND: Oral temozolomide has shown similar efficacy to dacarbazine in phase III trials with median progression-free survival (PFS) of 2.1 months. Bevacizumab has an inhibitory effect on the proliferation of melanoma and sprouting endothelial cells. We evaluated the addition of bevacizumab to temozolomide to improve efficacy in stage IV melanoma. PATIENTS AND METHODS: Previously untreated metastatic melanoma patients with Eastern Cooperative Oncology Group performance status of two or more were treated with temozolomide 150 mg/m(2) days 1-7 orally and bevacizumab 10 mg/kg body weight i.v. day 1 every 2 weeks until disease progression or unacceptable toxicity. The primary end point was disease stabilisation rate [complete response (CR), partial response (PR) or stable disease (SD)] at week 12 (DSR12); secondary end points were best overall response, PFS, overall survival (OS) and adverse events. RESULTS: Sixty-two patients (median age 59 years) enrolled at nine Swiss centres. DSR12 was 52% (PR: 10 patients and SD: 22 patients). Confirmed overall response rate was 16.1% (CR: 1 patient and PR: 9 patients). Median PFS and OS were 4.2 and 9.6 months. OS (12.0 versus 9.2 months; P = 0.014) was higher in BRAF V600E wild-type patients. CONCLUSIONS: The primary end point was surpassed showing promising activity of this bevacizumab/temozolomide combination with a favourable toxicity profile. Response and OS were significantly higher in BRAF wild-type patients.
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
The statistical analysis of literary style is the part of stylometry that compares measurable characteristicsin a text that are rarely controlled by the author, with those in other texts. When thegoal is to settle authorship questions, these characteristics should relate to the author’s style andnot to the genre, epoch or editor, and they should be such that their variation between authors islarger than the variation within comparable texts from the same author.For an overview of the literature on stylometry and some of the techniques involved, see for exampleMosteller and Wallace (1964, 82), Herdan (1964), Morton (1978), Holmes (1985), Oakes (1998) orLebart, Salem and Berry (1998).Tirant lo Blanc, a chivalry book, is the main work in catalan literature and it was hailed to be“the best book of its kind in the world” by Cervantes in Don Quixote. Considered by writterslike Vargas Llosa or Damaso Alonso to be the first modern novel in Europe, it has been translatedseveral times into Spanish, Italian and French, with modern English translations by Rosenthal(1996) and La Fontaine (1993). The main body of this book was written between 1460 and 1465,but it was not printed until 1490.There is an intense and long lasting debate around its authorship sprouting from its first edition,where its introduction states that the whole book is the work of Martorell (1413?-1468), while atthe end it is stated that the last one fourth of the book is by Galba (?-1490), after the death ofMartorell. Some of the authors that support the theory of single authorship are Riquer (1990),Chiner (1993) and Badia (1993), while some of those supporting the double authorship are Riquer(1947), Coromines (1956) and Ferrando (1995). For an overview of this debate, see Riquer (1990).Neither of the two candidate authors left any text comparable to the one under study, and thereforediscriminant analysis can not be used to help classify chapters by author. By using sample textsencompassing about ten percent of the book, and looking at word length and at the use of 44conjunctions, prepositions and articles, Ginebra and Cabos (1998) detect heterogeneities that mightindicate the existence of two authors. By analyzing the diversity of the vocabulary, Riba andGinebra (2000) estimates that stylistic boundary to be near chapter 383.Following the lead of the extensive literature, this paper looks into word length, the use of the mostfrequent words and into the use of vowels in each chapter of the book. Given that the featuresselected are categorical, that leads to three contingency tables of ordered rows and therefore tothree sequences of multinomial observations.Section 2 explores these sequences graphically, observing a clear shift in their distribution. Section 3describes the problem of the estimation of a suden change-point in those sequences, in the followingsections we propose various ways to estimate change-points in multinomial sequences; the methodin section 4 involves fitting models for polytomous data, the one in Section 5 fits gamma modelsonto the sequence of Chi-square distances between each row profiles and the average profile, theone in Section 6 fits models onto the sequence of values taken by the first component of thecorrespondence analysis as well as onto sequences of other summary measures like the averageword length. In Section 7 we fit models onto the marginal binomial sequences to identify thefeatures that distinguish the chapters before and after that boundary. Most methods rely heavilyon the use of generalized linear models
Resumo:
The microenvironment hosting a tumor actively participates in regulating tumor cell proliferation, migration, and invasion. Among the extracellular matrix proteins enriched in the stroma of carcinomas are the tenascin family members tenascin-C and tenascin-W. Whereas tenascin-C overexpression in gliomas is known to correlate with poor prognosis, the status of tenascin-W in brain tumors has not been investigated so far. In the present study, we analyzed protein levels of tenascin-W in 38 human gliomas and found expression of tenascin-W in 80% of the tumor samples, whereas no tenascin-W could be detected in control, nontumoral brain tissues. Double immunohistochemical staining of tenascin-W and von Willebrand factor revealed that tenascin-W is localized around blood vessels, exclusively in tumor samples. In vitro, the presence of tenascin-W increased the proportion of elongated human umbilical vein endothelial cells (HUVECs) and augmented the mean speed of cell migration. Furthermore, tenascin-W triggered sprouting of HUVEC spheroids to a similar extent as the proangiogenic factor tenascin-C. In conclusion, our study identifies tenascin-W as a candidate biomarker for brain tumor angiogenesis that could be used as a molecular target for therapy irrespective of the glioma subtype.-Martina, E., Degen, M., Rüegg, C., Merlo, A., Lino, M. M., Chiquet-Ehrismann, R., Brellier, F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro.
Resumo:
Summary : Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis. To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells. We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.
Resumo:
Tumor-mobilized bone marrow-derived CD11b(+) myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11b(+) myelomonocytic cells develop proangiogenic properties during their differentiation from CD34(+) hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education. Cultures of human CD34(+) progenitors supplemented with conditioned medium from breast cancer cell lines or PlGF, but not from nontumorigenic breast epithelial lines, generate CD11b(+) cells capable of inducing endothelial cell sprouting in vitro and angiogenesis in vivo. An anti-Flt-1 mAb or soluble Flt-1 abolished the generation of proangiogenic activity during differentiation from progenitor cells. Moreover, inhibition of metalloproteinase activity, but not VEGF, during the endothelial sprouting assay blocked sprouting induced by these proangiogenic CD11b(+) myelomonocytes. In a mouse model of breast cancer, circulating CD11b(+) cells were proangiogenic in the sprouting assays. Silencing of PlGF in tumor cells prevented the generation of proangiogenic activity in circulating CD11b(+) cells, inhibited tumor blood flow, and slowed tumor growth. Peripheral blood of breast cancer patients at diagnosis, but not of healthy individuals, contained elevated levels of PlGF and circulating proangiogenic CD11b(+) myelomonocytes. Taken together, our results show that cancer cells can program proangiogenic activity in CD11b(+) myelomonocytes during differentiation of their progenitor cells in a PlGF-dependent manner. These findings impact breast cancer biology, detection, and treatment. Cancer Res; 71(11); 3781-91. ©2011 AACR.
Resumo:
In rodents and nonhuman primates subjected to spinal cord lesion, neutralizing the neurite growth inhibitor Nogo-A has been shown to promote regenerative axonal sprouting and functional recovery. The goal of the present report was to re-examine the data on the recovery of the primate manual dexterity using refined behavioral analyses and further statistical assessments, representing secondary outcome measures from the same manual dexterity test. Thirteen adult monkeys were studied; seven received an anti-Nogo-A antibody whereas a control antibody was infused into the other monkeys. Monkeys were trained to perform the modified Brinkman board task requiring opposition of index finger and thumb to grasp food pellets placed in vertically and horizontally oriented slots. Two parameters were quantified before and following spinal cord injury: (i) the standard 'score' as defined by the number of pellets retrieved within 30 s from the two types of slots; (ii) the newly introduced 'contact time' as defined by the duration of digit contact with the food pellet before successful retrieval. After lesion the hand was severely impaired in all monkeys; this was followed by progressive functional recovery. Remarkably, anti-Nogo-A antibody-treated monkeys recovered faster and significantly better than control antibody-treated monkeys, considering both the score for vertical and horizontal slots (Mann-Whitney test: P = 0.05 and 0.035, respectively) and the contact time (P = 0.008 and 0.005, respectively). Detailed analysis of the lesions excluded the possibility that this conclusion may have been caused by differences in lesion properties between the two groups of monkeys.
Resumo:
Biology of the leaf gall inducer Neotrioza tavaresi Crawford, 1925 (Hemiptera, Psyllidae) on strawberry guava tree (Psidium cattleianum). A field study was conducted in Curitiba region, State of Paraná, southern Brazil, to describe the life cycle of Neotrioza tavaresi Crawford, 1925, a leaf galling insect in strawberry guava trees (Psidium cattleianum). Three cycles were observed (1997, 1998, 1999) during regular field trips and the insects were observed in Piraquara municipality, where 15 samples with 50 infested leaves were sampled in the 1997-98 cycle. Galls were dissected for detailed studies. Neotrioza tavaresi has a univoltine cycle in which adult individuals were found inside the galls from August onwards. The sexually mature insects with sex ratio 1, emerged from the galls after their dehiscence caused by feeding of the adult insects on the gall walls. Adult emergence started in early October and ended by early December, with its peak in November. Copulation took place as soon as adults exit the gall and egg laying started the next day. Females had more than 100 ovarioles containing 218.7±44.7 (n=50) fully formed eggs. This indicated the short sexual adult life-span (aprox. 5-7 days) of the species, also characterized by a concentrated oviposition. Adult individuals fed and laid their eggs on younger shoots of the plant. The bottoms of the yellowish eggs were inserted into the leaf tissue, mainly on its adaxial edge (78.1%). The nymphs hatched and, as they fed on the adaxial side of expanding leaves, modified the cell growth pattern and the round-shape galls developed on the adaxial side with one insect inside. The gall wall showed distinct layers, with the inner one suppliyng the food to the insects, and the outer layer supplying gall protection. Nymphs went through five instars and the exuviae remained stuck on a ball of wax inside the gall. All parasitoids found were Hymenoptera belonging to Chalcidoidea: Eulophidae (1 sp), Pteromalidae (2 spp) and Encyrtidae (3 spp). The findings suggest that leaf gall inducer and parasitoids insects and plant life cycles are closely connected and both leaf sprouting and gall opening seem to be triggered by the same environmental and plant conditions. The high abundance of shoots may favor insect performance as adult individuals can easily find an ideal place for feeding, copulating and laying eggs.
Resumo:
ABSTRACTIn normal tissues, a balance between pro- and anti-angiogenic factors tightly controls angiogenesis. Alterations of this balance may have pathological consequences. For instance, concerning the retina, the vascular endothelial growth factor (VEGF) is a potent pro-angiogenic factor, and has been identified has a key player during ocular neovascularization implicated in a variety of retinal diseases. In the exudative form (wet-form) of age-related macular degeneration (AMD), neovascularizations occurring from the choroidal vessels are responsible for a quick and dramatic loss of visual acuity. In diabetic retinopathy and retinopathy of prematurity, sprouting from the retinal vessels leads to vision loss. Furthermore, the aging of the population, the increased- prevalence of diabetes and the better survival rate of premature infants will lead to an increasing rate of these conditions. In this way, anti-VEGF strategy represents an important therapeutic target to treat ocular neovascular disorders.In addition, the administration of Pigmented Epithelial growth factor, a neurotrophic and an anti- angiogenic factor, prevents photoreceptor cell death in a model of retinal degeneration induced by light. Previous results analyzing end point morphology reveal that the light damage (LD) model is used to mimic retinal degenerations arising from environmental insult, as well as aging and genetic disease such as advanced atrophic AMD. Moreover, light has been identified as a co-factor in a number of retinal diseases, speeding up the degeneration process. This protecting effect of PEDF in the LD retina raises the possibility of involvement of the balance between pro- and anti-angiogenic factors not only for angiogenesis, but also in cell survival and maintenance.The aim of the work presented here was to evaluate the importance of this balance in neurodegenerative processes. To this aim, a model of light-induced retinal degeneration was used and characterized, mainly focusing on factors simultaneously controlling neuron survival and angiogenesis, such as PEDF and VEGF.In most species, prolonged intense light exposure can lead to photoreceptor cell damage that can progress to cell death and vision loss. A protocol previously described to induce retinal degeneration in Balb/c mice was used. Retinas were characterized at different time points after light injury through several methods at the functional and molecular levels. Data obtained confirmed that toxic level of light induce PR cell death. Variations were observed in VEGF pathway players in both the neural retina and the eye-cup containing the retinal pigment epithelium (RPE), suggesting a flux of VEGF from the RPE towards the neuroretina. Concomitantly, the integrity of the outer blood-retinal-barrier (BRB) was altered, leading to extravascular albumin leakage from the choroid throughout the photoreceptor layer.To evaluate the importance of VEGF during light-induced retinal degeneration process, a lentiviral vector encoding the cDNA of a single chain antibody directed against all VEGF-A isoforms was developed (LV-V65). The bioactivity of this vector to block VEGF was validated in a mouse model of laser-induced choroidal neovascularization mediated by VEGF upregulation. The vector was then used in the LD model. The administration of the LV-V65 contributed to the maintenance of functional photoreceptors, which was assessed by ERG recording, visual acuity measurement and histological analyses. At the RPE level, the BRB integrity was preserved as shown by the absence of albumin leakage and the maintenance of RPE cell cohesion.These results taken together indicate that the VEGF is a mediator of light induced PR degeneration process and confirm the crucial role of the balance between pro- and anti-angiogenic factors in the PR cell survival. This work also highlights the prime importance of BRB integrity and functional coupling between RPE and PR cells to maintain the PR survival. VEGF dysregulation was already shown to be involved in wet AMD forms and our study suggests that VEGF dysregulation may also occur at early stages of AMD and could thus be a potential therapeutic target for several RPE related diseases.RESUMEDans les différents tissues de l'organisme, l'angiogenèse est strictement contrôlée par une balance entre les facteurs pro- et anti-angiogéniques. Des modifications survenant dans cette balance peuvent engendrer des conséquences pathologiques. Par exemple, concernant la rétine, le facteur de croissance de l'endothélium vasculaire (VEGF) est un facteur pro-angiogénique important. Ce facteur a été identifié comme un acteur majeur dans les néovascularisations oculaires et les processus pathologiques angiogéniques survenant dans l'oeil et responsables d'une grande variété de maladies rétiniennes. Dans la forme humide de la dégénérescence maculaire liée à l'âge (DMLA), la néovascularisation choroïdienne est responsable de la perte rapide et brutale de l'acuité visuelle chez les patients affectés. Dans la rétinopathie diabétique et celle lié à la prématurité, l'émergence de néovaisseaux rétiniens est la cause de la perte de la vision. Les néovascularisations oculaires représentent la principale cause de cécité dans les pays développés. De plus, l'âge croissant de la population, la progression de la prévalence du diabète et la meilleure survie des enfants prématurés mèneront sans doute à l'augmentation de ces pathologies dans les années futures. Dans ces conditions, les thérapies anti- angiogéniques visant à inhiber le VEGF représentent une importante cible thérapeutique pour le traitement de ces pathologies.Plusieurs facteurs anti-angiogéniques ont été identifiés. Parmi eux, le facteur de l'épithélium pigmentaire (PEDF) est à la fois un facteur neuro-trophique et anti-angiogénique, et l'administration de ce facteur au niveau de la rétine dans un modèle de dégénérescence rétinienne induite par la lumière protège les photorécepteurs de la mort cellulaire. Des études antérieures basées sur l'analyse morphologique ont révélé que les modifications survenant lors de la dégénération induite suite à l'exposition à des doses toxiques de lumière représente un remarquable modèle pour l'étude des dégénérations rétiniennes suite à des lésions environnementales, à l'âge ou encore aux maladies génétiques telle que la forme atrophique avancée de la DMLA. De plus, la lumière a été identifiée comme un co-facteur impliqué dans un grand nombre de maladies rétiniennes, accélérant le processus de dégénération. L'effet protecteur du PEDF dans les rétines lésées suite à l'exposition de des doses toxiques de lumière suscite la possibilité que la balance entre les facteurs pro- et anti-angiogéniques soit impliquée non seulement dans les processus angiogéniques, mais également dans le maintient et la survie des cellules.Le but de ce projet consiste donc à évaluer l'implication de cette balance lors des processus neurodégénératifs. Pour cela, un modèle de dégénération induite par la lumière à été utilisé et caractérisé, avec un intérêt particulier pour les facteurs comme le PEDF et le VEGF contrôlant simultanément la survie des neurones et l'angiogenèse.Dans la plupart des espèces, l'exposition prolongée à une lumière intense peut provoquer des dommages au niveau des cellules photoréceptrices de l'oeil, qui peut mener à leur mort, et par conséquent à la perte de la vision. Un protocole préalablement décrit a été utilisé pour induire la dégénération rétinienne dans les souris albinos Balb/c. Les rétines ont été analysées à différents moments après la lésion par différentes techniques, aussi bien au niveau moléculaire que fonctionnel. Les résultats obtenus ont confirmé que des doses toxiques de lumière induisent la mort des photorécepteurs, mais altèrent également la voie de signalisation du VEGF, aussi bien dans la neuro-rétine que dans le reste de l'oeil, contenant l'épithélium pigmentaire (EP), et suggérant un flux de VEGF provenant de ΙΈΡ en direction de la neuro-rétine. Simultanément, il se produit une altération de l'intégrité de la barrière hémato-rétinienne externe, menant à la fuite de protéine telle que l'albumine, provenant de la choroïde et retrouvée dans les compartiments extravasculaires de la rétine, telle que dans la couche des photorécepteurs.Pour déterminer l'importance et le rôle du VEGF, un vecteur lentiviral codant pour un anticorps neutralisant dirigée contre tous les isoformes du VEGF a été développé (LV-V65). La bio-activité de ce vecteur a été testé et validée dans un modèle de laser, connu pour induire des néovascularisations choroïdiennes chez la souris suite à l'augmentation du VEGF. Ce vecteur a ensuite été utilisé dans le modèle de dégénération induite par la lumière. Les résultats des électrorétinogrammes, les mesures de l'acuité visuelle et les analyses histologiques ont montré que l'injection du LV-V65 contribue à la maintenance de photorécepteurs fonctionnels. Au niveau de l'EP, l'absence d'albumine et la maintenance des jonctions cellulaires des cellules de l'EP ont démontré que l'intégrité de la barrière hémato-rétinienne externe est préservée suite au traitement.Par conséquent, tous les résultats obtenus indiquent que le VEGF est un médiateur important impliquée dans le processus de dégénération induit par la lumière et confirme le rôle cruciale de la balance entre les facteurs pro- et anti-angiogéniques dans la survie des photorécepteurs. Cette étude révèle également l'importance de l'intégrité de la barrière hémato-rétinienne et l'importance du lien fonctionnel et structurel entre l'EP et les photorécepteurs, essentiel pour la survie de ces derniers. Par ailleurs, Cette étude suggère que des dérèglements au niveau de l'équilibre du VEGF ne sont pas seulement impliqués dans la forme humide de la DMLA, comme déjà démontré dans des études antérieures, mais pourraient également contribuer et survenir dans des formes précoces de la DMLA, et par conséquent le VEGF représente une cible thérapeutique potentielle pour les maladies associées à des anomalies au niveau de l'EP.
Resumo:
Radiotherapy is successfully used to treat cancer. Emerging evidence, however, indicates that recurrences after radiotherapy are associated with increased local invasion, metastatic spreading and poor prognosis. Radiation-induced modifications of the tumor microenvironment have been proposed to contribute to increased aggressive tumor behavior, an effect also referred to as tumor bed effect, but the putative mechanisms involved have remained largely elusive. We have recently demonstrated that irradiation of the prospective tumor stroma impairs de novo angiogenesis through sustained inhibition of proliferation, migration and sprouting of endothelial cells. Experimental tumors growing within a pre-irradiated field have reduced tumor angiogenesis and tumor growth, increased hypoxia, necrosis, local invasion and distant metastasis. Mechanisms of progression involve adaptation of tumor cells to local hypoxic conditions as well as selection of cells with invasive and metastatic capacities. The matricellular protein CYR61 and integrin αVβ5 emerged as molecules that cooperate to mediate lung metastasis. Cilengitide, a small molecular inhibitor of αV integrins prevented lung metastasis formation. These results represent a conceptual advance to the understanding of the tumor bed effect and indicate that αV integrin inhibition might be a potential therapeutic approach for preventing metastasis in patients at risk for post-radiation recurrences.
Resumo:
Radiotherapy is a well-established therapeutic modality in oncology. It provides survival benefits in several different cancer types. However, cancers relapsing after radiotherapy often develop into more aggressive conditions that are difficult to treat and are associated with poor prognosis. Cumulative experimental evidence indicates that the irradiated tumor bed contributes to such aggressive behavior. The involved mechanisms have for long remained elusive. Recent progress in the field revealed previously unrecognized cellular and molecular events promoting growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment. Cellular mechanisms include inhibition of sprouting angiogenesis, formation of hypoxia, activation and differentiation of stromal cells, and recruitment of bone marrow-derived cells with vasculogenic and prometastatic activities. Identified pathways include TGF-β/ALK5, CXCL12/CXCR4, KITL/KIT, and CYR61/αVβ5 integrin. The availability of pharmacologic inhibitors impinging on these pathways opens novel opportunities for translational and clinical studies. These experimental results and ongoing work highlight the importance of the irradiated microenvironment in modulating the tumor response to radiotherapy and open new opportunities for the development of novel therapeutic strategies for patients with cancer who relapse after radiotherapy. Here, we review and discuss recent advances in the field and their translational and therapeutic implications to human cancer treatment.
Resumo:
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG and OMgp, share two common neuronal receptors: NgR1, together with its co-receptors (p75(NTR), TROY and Lingo-1), and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study during in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes such as development, neuronal homeostasis, plasticity and neurodegeneration.
Resumo:
ABSTRACT: BACKGROUND: Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK) activity in cells of the dorsal root ganglia (DRGs) and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP)-43 and Calcitonin Gene Related Peptide (CGRP) in DRGs was used to relate injury related compensatory growth to altered sensory function. RESULTS: Peripheral nerve injury produced pain-related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR) neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. CONCLUSIONS: JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.
Resumo:
Background: Single agent DTIC is the standard therapy for metastatic melanoma (MM) with response rates of 5−20%. Temozolomide (Tem) as an oral drug has shown equal efficacy in phase III trials. Preclinical models have shown an inhibitory effect for bevacizumab (Bev) on the proliferation of melanoma cells as well as on sprouting endothelial cells. Therefore, a therapeutic approach that combines angiogenesis inhibitors with cytotoxic agents may provide clinical benefit in MM. Methods: Design: Multicenter phase II trial. Primary endpoint: Clinical benefit (CR, PR and SD) at 12 weeks; secondary endpoints: best overall response by RECIST, response duration, progression free survival, adverse events, survival after 6 months and overall survival. Sample size was calculated according to Simon's two stage optimal design (5% significance level and 80% power) with an overall sample size of 62 patients (pts) to test H0: 20% versus H1: 35% rate of clinical benefit. Response assessment was done every 6 weeks (3 cycles). Eligibility: Stage IV MM, ECOG PS 0−2, no prior treatment for metastatic disease. Treatment regimen: One cycle consisted of Tem at 150 mg/m2 days 1−7 po and Bev at 10 mg/kg day 1 over 30 min iv and was repeated every 2 weeks until progression or unacceptable toxicity. Results: Between January 2008 and April 2009, 62 pts (40 male/22 female) at a median age of 61 years (range 30−86) with stage IV (M1a:4, M1b:12, M1c:46) melanoma were enrolled in 9 centers. The first 50 pts, who received 415 cycles are included in this interim report. The overall response rate was 26% (CR: 1 pt, PR: 12 pts; PR not confirmed yet in 3 pts), and 44% (22 pts) had stable disease over 1.5−7.5 months (median: 3). Only 30% (15 pts) had disease progression at the first evaluation at week 6. The hematological grade 3/4 toxicities according to NCI CTAE 3.0 were thrombocytopenia 10% (5 pts), neutropenia 8% (4 pts), lymphopenia and leucocytopenia each 2% (1 pt). Cumulative non-hematological toxicities grade 3/4 were nausea and fatigue each 6% (3 pts), hypertension, vomiting and hemorrhage, each 4% (2 pts), thrombosis/embolism, infection, constipation, anorexia, elevation of alkaline phosphatase, bilirubin, GGT, ALT and AST each 2% (1 pt). Conclusion: In metastatic melanoma the combination of Tem/Bev is a safe regimen with a promising efficacy and few grade 3/4 toxicities. Updated results of all 62 pts will be presented.
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.