538 resultados para Spraying.
Resumo:
Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
Pseudocercospora macadamiae is an important pathogen of macadamia in Australia, causing a disease known as husk spot. Growers strive to control the disease with a number of carbendazim and copper treatments. The aim of this study was to consider the macadamia fruit developmental stage at which fungicide application is most effective against husk spot, and whether application of copper-only applications at full-size fruit developmental stage toward the end of the season contributed to effective disease control. Fungicides were applied to macadamia trees at four developmental stages in three orchards in two subsequent production seasons. The effects of the treatments on disease incidence and severity were quantified using area under disease progress curve (AUDPC) and logistic regression models. Although disease incidence varied between cultivars, incidence and severity on cv. A16 showed consistent differences between the treatments. Most significant reduction in husk spot incidence occurred when spraying commenced at match-head sized-fruit developmental stage. All treatments significantly reduced husk spot incidence and severity compared with the untreated controls, and a significant positive linear relationship (R2 = 73%) between AUDPC and severity showed that timing of the first fungicide application is important for effective disease control. Application of fungicide at full-size fruit stage reduced disease incidence but had no impact on premature fruit drop.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
Calotrope [Calotropis procera (Aiton) W.T.Aiton] is an exotic shrub or small tree species that is currently invading the tropical savannahs of northern Australia. A chemical trial involving 11 herbicides and four application methods (foliar, basal bark, cut stump and soil applied) was undertaken to identify effective chemicals to control calotrope. Of the foliar herbicides tested, imazapyr provided 100% mortality at the rates applied, and the higher rate of metsulfuron-methyl killed 100% of the treated plants. The herbicides 2,4-D butyl ester, fluroxypyr, triclopyr and triclopyr/picloram killed greater than 80% of the plants when applied by a basal bark or cut stump (when cut 5cm above ground level) method of application. Plants cut close to ground level (5cm) were controlled more effectively than plants cut 20cm above ground level. Chemical control (foliar and cut stump spraying) is a cost effective tool to treat calotrope densities <800plants/ha. Adoption of pasture management practices that promote perennial grasses, in conjunction with strategic chemical control, would further increase the effectiveness and reduce the costs of controlling vast areas of this weed.
Resumo:
A replicated trial was conducted at Tallegalla in south-east Queensland to assess the effectiveness of a range of control methods for climbing asparagus Asparagus africanus Lam. A total of 18 treatments using mechanical, cut stump, basal bark, foliar spray and splatter gun techniques were trialled with a range of herbicides and application rates. Removing the plant and placing it above the ground surface was most effective in killing climbing asparagus. Basal bark spraying of 24 g triclopyr ester (40 mL Garlon® 600) or 10 g fluroxypyr ester (50 mL Starane® 200) L-1 diesel and the cut stump application of neat diesel or 225 g glyphosate (500 mL Glyphosate CT®) L-1 water offered the best chemical control of climbing asparagus.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.
Resumo:
Navua sedge, a member of the Cyperaceae family, is an aggressive weed of pastures in Fiji, Sri Lanka, Malay Peninsula, Vanuatu, Samoa, Solomons, and Tahiti and is now a weed of pastures and roadsides in north Queensland, Australia. Primarily restricted to areas with an annual rainfall exceeding 2500 mm, Navua sedge is capable of forming dense stands smothering many tropical pasture species. Seventeen herbicides were field tested at three sites in north Queensland, with glyphosate, halosulfuron, hexazinone, imazapic, imazapyr, or MSMA the most effective for Navua sedge control. Environmental problems such as persistence in soil, lack of selectivity and movement off-site may occur using some herbicides at the predicted LC90 control level rates. A seasonality trial using halosulfuron (97.5 g ai/ha) gave better Navua sedge control (84%) spraying March to September than spraying at other times (50%). In a frequency trial, sequential glyphosate applications (2,160 g ae/ha) every two months was more effective for continued Navua sedge control (67%) than a single application of glyphosate (36%), though loss of ground cover would occur. In a management trial, single applications of glyphosate (2,160 to 3,570 g ae/ha) using either a rope wick, ground foliar spraying or a rotary rope wick gave 59 to 73% control, while other treatments (rotary hoe (3%), slashing (-13%) or crushing (-30%)) were less effective. In a second management trial, four monthly rotary wick applications were much more effective (98%) than four monthly crushing applications (42%). An effective management plan must include the application of regular herbicide treatments to eliminate Navua sedge seed being added to the soil seed bank. Treatments that result in seed burial, for example, discing are likely to prolong seed persistence and should be avoided. The sprouting activity of vegetative propagules and root fragmentation needs to also be considered when selecting control options.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.
Resumo:
In the rangelands of northern Australia, basal bark, cut stump, hand applied residual herbicides and foliar spraying have traditionally been the main herbicide techniques for control of individual exotic woody weeds growing within scattered to medium density infestations. In this paper we report on the preliminary results of stem injection as an alternate technique for the control of yellow oleander ( Cascabela thevetia (L.) Lippold), a woody weed that is difficult to kill. A randomised complete block experiment comprising 12 herbicide treatments (including a control) and three replicates was undertaken. Two rates of triclopyr + picloram, hexazinone, glyphosate, 2,4- D + picloram and metsufuron methyl and one rate of imazapyr were tested. At 15 months after application, triclopyr + picloram, glyphosate, 2,4-D + picloram and imazapyr all recorded high mortality (>90%) for at least one application rate. These results suggest that stem injection warrants further investigation as a control technique for other exotic woody weeds growing in rangelands.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) L.G.Lohmann (formerly known as Macfadyena unguis-cati (L.) A.H.Gentry), a Weed of National Significance (WoNS), is a structural woody parasite that is highly invasive along sensitive riparian corridors and native forests of coastal and inland eastern Australia. As part of evaluation of the impact of herbicide and mechanical/physical control techniques on the long-term reduction of biomass of the weed and expected return of native flora, we have set-up permanent vegetation plots in: (a) infested and now chemically/physically treated, (b) infested but untreated and (c) un-infested patches. The treatments were set up in both riparian and non-riparian habitats to document changes that occur in seed bank flora over a two-year post-treatment period. Response to treatment varied spatially and temporally. However, following chemical and physical removal treatments, treated patches exhibited lower seed bank abundance and diversity than infested and patches lacking the weed, but differences were not statistically significant. Thus it will be safe to say that spraying herbicides using the recommended rate does not undermine restoration efforts.
Resumo:
In the sub-tropical grain region of Australia, cotton and grains systems are now dominated by flaxleaf fleabane (Conyza bonariensis (L.) Cronquist), feathertop Rhodes grass (Chloris virgata Sw.) and awnless barnyard grass (Echinochloa colona (L.) Link). While control of these weed species is best achieved when they are young, previous studies have shown a potential for reducing seed viability and minimising seed bank replenishment by applying herbicides when plants are reproductive. Pot trials were established over two growing seasons to examine the effects of 2,4-D, 2,4-D + picloram, glyphosate and glufosinate which had been successful on other species, along with paraquat and haloxyfop (grasses only). Herbicides were applied at ¾ field rates in an attempt not to kill the plants. Flaxleaf fleabane plants were sprayed at two growth stages (budding and flowering) and the grasses were sprayed at two stages (late tillering/booting and flowering). Spraying flaxleaf fleabane at flowering reduced seed viability to 0% (of untreated) in all treatments except glyphosate (51%) and 2,4-D + picloram (8%). Seed viability was not reduced with the first and second regrowths with the exception of 2,4-D + picloram where viability was reduced to 20%. When sprayed at budding only 2,4-D + picloram reduced seed viability in both trials. Spraying the grasses at late tillering/booting did not reduce viability except for glufosinate on awnless barnyard grass (50%). Applying herbicides at flowering resulted in 0% seed viability in awnless barnyard grass from glufosinate, paraquat and glyphosate and 0% viability in feathertop Rhodes grass for glufosinate. These herbicides were less effective on heads that emerged and flowered after spraying, only slightly reducing seed viability. These trials have shown that attempts to reduce seed viability have potential, however flaxleaf fleabane and feathertop Rhodes grass are able to regrow and will need on-going monitoring and control measures.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.