278 resultados para Spinner flask
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. [xi]-xii.
Resumo:
Glass, Islamic, Ayyubid to Mamluk; H: 10 5/64 in.; glass, trailed
Resumo:
Glass, Islamic, Ayyubid to Mamluk; 7 7/8 in.x 4 17/32 in.; glass, combed
Resumo:
Glass, Islamic, Ayyubid; 9 9/64 in.x 5 63/64 in.; glass,gold, gilt and enameled
Resumo:
Glass, Islamic, Ayyubid; 9 9/64 in.x 5 63/64 in.; glass,gold, gilt and enameled
Resumo:
Glass, Islamic, Ayyubid; 9 9/64 in.x 5 63/64 in.; glass,gold, gilt and enameled
Resumo:
Scarlet cloth, ornamented in blind.
Resumo:
Mode of access: Internet.
Resumo:
Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast.
Resumo:
Acknowledgements University of Aberdeen, UK and Bay of Bengal Large Marine Ecosystems (BOBLME) project are acknowledged for partial funding of this research.
Resumo:
Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai‛i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.
Resumo:
A series of quali- and quantitative analyses were conducted to evaluate the variability of spinner dolphin whistles from the Fernando de Noronha Archipelago off Brazil. Nine variables were extracted from each whistle contour, and the whistle contours shapes were classified into the seven categories described in Driscoll (1995). The analysis showed mean beginning and ending frequencies values of 10.78 and 12.74 kHz, respectively. on average, whistle duration was relatively short, with mean values around 0.495 s (N=702). Comparative analyses were also conducted to investigate the relationship between the obtained results and those presented in previous studies. When comparing averages, the results of the study of Oswald et al. (2003) in the Tropical Eastern Pacific (TEP) presented less significant differences in relation to this study; only whistle duration differed significantly between both works. The results of multivariate classification tests also pointed TEP population as the closest related to the population studied here. The similarities between such disjunct populations might be attributed to a more recent isolation event (the closing of the Panama Isthmus) than the divergence that has driven North and South Atlantic populations apart. (c) 2006 Acoustical Society of America.
Resumo:
Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.