996 resultados para Spin chain
Resumo:
Wir betrachten die eindimensionale Heisenberg-Spinkette aus einem neuen und aktuelleren Blickwinkel. Experimentelle Techniken der Herstellung und selbstverständlich auch experimentelle Meßmethoden erlauben nicht nur die Herstellung von Nanopartikeln und Nanodrähten, sondern gestatten es auch, Domänenwände in diesen Strukturen auszumessen. Die meisten heute verwendeten Theorien und Simulationsmethoden haben ihre Grundlage im mikromagnetischen Kontinuumsmodell, daß schon über Jahrzehnte hinweg erforscht und erprobt ist. Wir stellen uns jedoch die Frage, ob die innere diskrete Struktur der Substrate und die quantenmechanischen Effekte bei der Genauigkeit heutiger Messungen in Betracht gezogen werden müssen. Dazu wählen wir einen anderen Ansatz. Wir werden zunächst den wohlbekannten klassischen Fall erweitern, indem wir die diskrete Struktur der Materie in unseren Berechnungen berücksichtigen. Man findet in diesem Formalismus einen strukturellen Phasenübergang zwischen einer Ising-artigen und einer ausgedehnten Wand. Das führt zu bestimmten Korrekturen im Vergleich zum Kontinuumsfall. Der Hauptteil dieser Arbeit wird sich dann mit dem quantenmechanischen Fall beschäftigen. Wir rotieren das System zunächst mit einer Reihe lokaler Transformationen derart, daß alle Spins in die z-Richtung ausgerichtet sind. Im Rahmen einer 1/S-Entwicklung läßt sich der erhaltene neue Hamilton-Operator diagonalisieren. Setzt man hier die klassische Lösung ein, so erhält man Anregungsmoden in diesem Grenzfall. Unsere Resultate erweitern und bestätigen frühere Berechnungen. Mit Hilfe der Numerik wird schließlich der Erwartungswert der Energie minimiert und somit die Form der Domänenwand im quantenmechanischen Fall berechnet. Hieraus ergeben sich auch bestimmte Korrekturen zum kritischen Verhalten des Systems. Diese Ergebnisse sind vollkommen neu.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Within the framework of the AdS5/CFT4 correspondence, the GKP string living on a AdS5 x S5 background finds a counterpart in the anti-ferromagnetic vacuum state for the spin chain, fruitfully employed to investigate the dual N=4 SYM superconformal gauge theory. The thesis mainly deals with the excitations over such a vacuum: dispersion relations and scattering matrices are computed, moreover a set of Asymptotic Bethe Ansatz equations is formulated. Furthermore, the survey of the GKP vacuum within the AdS4/CFT3 duality between a string theory on AdS4 x CP 3 and N=6 Chern-Simons reveals intriguing connections relating the latter to N=4 SYM, in a peculiar high spin limit.
Resumo:
We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang-Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.
Resumo:
The spectrum of short-closed chains up to N=12 are studied by exact diagonalization to obtain the spin-wave spectrum of the Hamiltonian H=2J Sigma i=1Nsi.si+1+2J alpha Sigma i=1Nsi.si+2, -1.0
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.
Resumo:
The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.
Resumo:
We show that the statistical properties of a Coulomb crystal can be measured by means of a standard interferometric procedure performed on the spin of one ion in the chain. The ion spin, constituted by two internal levels of the ion, couples to the crystal modes via spatial displacement induced by photon absorption. The loss of contrast in the interferometric signal allows one to measure the autocorrelation function of the crystal observables. Close to the critical point, where the chain undergoes a second-order phase transition to a zigzag structure, the signal gives the behavior of the correlation function at the critical point.
Resumo:
The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.
Resumo:
Two new Mn(III) complexes of formulas [MnL1(N-3)(OMe)](2) (1) and [MnL2(N-3)(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL1{(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL2 {(2-[1-(2-dimethylaminoethylimino)methyl]-phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single mu(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound I show the presence of weak ferromagnetic exchange interactions mediated by double methoiddo bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single mu(1,3)-N-3 bridge with a spin canting that leads to a long-range antiferromagnetic order at T-c approximate to 9.3 K and a canting leading to a weak ferromagnetic long-range order at T-c approximate to 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.
Resumo:
Results of systematic tunable-frequency ESR studies of the spin dynamics in NiCl2-4SC(NH2)(2) (known as DTN), a gapped S = 1 chain system with easy-plane anisotropy dominating over the exchange coupling (large-D chain), are presented. We have obtained direct evidence for two-magnon bound states, predicted for S = 1 large-D spin chains in the fully spin-polarized (FSP) phase. The frequency-field dependence of the corresponding excitations was calculated using the set of parameters obtained earlier [S.A. Zvyagin, et al., Phys. Rev. Lett. 98 (2007) 047205]. Very good agreement between the calculations and the experiment was obtained. It is argued that the observation of transitions from the ground to two-magnon bound states might indicate a more complex picture of magnetic interactions in DTN, involving a finite in-plane anisotropy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.