987 resultados para Spectroscopic studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsymmetrical diphosphazanes X2PN(Pr(i))PYY'(1a-1h) {X = Ph, YY' = O2 C6H4 (1a) or YY' = O2C12H8 (1b); X = Ph, Y = Ph, Y' = OC6H4Me-4 (1c), OC6H4Br-4 (1d), OC6H3Me2-3,5 (1e), OC5H4N-2 (1f), N2C3HMe2-3,5 (1g) or Cl (1h)} react with [M(CO)4(NHC5H10)2] (M = Mo, W) to yield the cis-chelate complexes [M(CO)4{X2PN(Pr(i)) PYY'}] {M = Mo (2a-2h); M = W (3-f,3-g)}. These complexes have been characterized by H-1, P-31 and C-13 NMR and IR spectroscopic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfluoro substituted organic compounds have attracted attention owing to their unique structure and reactivity induced by the perfluoro effect. Fluoranil, a perfluoro derivative of p-benzoquinone, is the subject of this paper. Although the perfluoro effect in the ground state seems to have been well understood there is no information available about such effects on the excited state. Here, the time-resolved resonance Raman spectra of the triplet excited state of fluoranil are reported along with the Raman excitation profiles (REPs) of the various vibrational modes. The vibrational spectral analyses have been carried out by analogy with the fluoranil ground state, triplet benzoquinone, and triplet chloranil vibrational spectral assignments. Also, the assignments are further supported by the calculated frequencies using ab initio theoretical methods. It is observed that for fluoranil in the triplet excited state, due to the perfluoro effect, the structure is considerably less distorted than benzoquinone and also the electron delocalization in the pi* antibonding orbital is less than that of triplet excited state of benzoquinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioxanthone has been investigated extensively owing to its unique photochemical and photophysical applications and its solvatochromic behavior. Here, we report the time-resolved resonance Raman studies on the structure of the lowest triplet excited state of thioxanthone in carbon tetrachloride. In addition, FT-IR and FT-Raman techniques have been used to study the vibrational structure in the ground state. To corroborate the experimental findings, density functional theory calculations have been carried out. Isotopic calculations and normal coordinate analysis have been used to help in assigning the observed bands to Raman vibrational modes. Structural information derived from this study is expected to help in better understanding the triplet state photochemistry of thioxanthone.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2p 6d feature in the Bi L3 spectra has different energies in the semiconducting (0.0≤x<0.7) and the superconducting (x=0.75) compositions of BaBi1−xPbxO3. The Bi 4f core level spectrum shows distinct features ascribable to Bi III and Bi V in BaBiO3 and in the semiconducting compositions; the width of the 4f peaks is also considerably larger in these compositions compared to that in BaBi0.25Pb0.75O3, which shows a single sharp Bi 4f feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD results confirm the bcc crystal structure of the as prepared In2O3 nanostructures. Strong and broad photoluminescence spectrum located at the green to red region with maximum intensity at 566 nm along with a weak ultraviolet emission at 338 nm were observed due to oxygen vacancy levels and free excitonic transitions, respectively. The valence band onset energy of 2.1 eV was observed from the XPS valence band spectrum, clearly justifies the alignment of Fermi level to the donor level created due to the presence of oxygen vacancies which were observed in the PL spectrum. The elemental ratio In:O in as prepared In2O3 was found to be 42:58 which is in close agreement with the stoichiometric value of 40:60. A downward shift was observed in the Raman peak positions due to a possible phonon confinement effect in the nanoparticles formed in bursting mechanism. Such single junction devices exhibit promising photovoltaic performance with fill factor and conversion efficiency of 21% and 0.2%, respectively, under concentrated AM1.5 illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.