998 resultados para Spectral Synthesis
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.
Resumo:
Novel [Ru(eta(6)-p-cymene)(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O complexes (L = bis-, tris-, or tetrakis-pyrazolylborate; X = Cl, N-3, PF6, or CF3SO3) are prepared by treatment of [Ru(eta(6)-p-cymene)Cl-2](2) with poly-(pyrazolyl)borate derivatives [M(L)] (L in general; in detail L = Ph(2)Bp = diphenylbis-(pyrazol-1-yl)borate; L = Tp = hydrotris(pyrazol-1-yl)borate; L = pzTp = tetrakis(pyrazol-1-yl)borate; L = Tp(4Bo) = hydrotris(indazol-1-yl)borate, L = T-p4Bo,T-5Me = (5-methylindazol-1-yl)borate; L = Tp(Bn,4Ph) = hydrotris(3-benzyl-4-phenylpyrazol-1-yl)borate; M = Na, K, or TI) and characterized by analytical and spectral data (IR, ESIMS, H-1 and C-13 NMR). The structures of [Ru(eta(6)-p-cymene)(Ph(2)Bp)Cl] (1) and [Ru(eta(6)-p-cymene)(Tp)Cl] (3) have been established by single-crystal X-ray diffraction analysis. Electrochemical studies allowed comparing the electron-donor characters of Tp and related ligands and estimating the corresponding values of the Lever E-L ligand parameter. The complexes [Ru(eta(6)-p-cymene)-(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O act as catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehyde and nitroethane to the corresponding beta-nitroalkanol (up to 82% yield, at room temperature) with diastereoselectivity toward the formation of the threo isomer.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.
Resumo:
This paper presents a framework in which samples of bowing gesture parameters are retrieved and concatenated from a database of violin performances by attending to an annotated input score. Resulting bowing parameter signals are then used to synthesize sound by means of both a digital waveguide violin physical model, and an spectral-domainadditive synthesizer.
Resumo:
Tämä diplomityö liittyy Spektrikuvien tutkimiseen tilastollisen kuvamallin näkökulmasta. Diplomityön ensimmäisessä osassa tarkastellaan tilastollisten parametrien jakaumien vaikutusta väreihin ja korostumiin erilaisissa valaistusolosuhteissa. Havaittiin, että tilastollisten parametrien väliset suhteet eivät riipu valaistusolosuhteista, mutta riippuvat kuvan häiriöttömyydestä. Ilmeni myös, että korkea huipukkuus saattaa aiheutua värikylläisyydestä. Lisäksi työssä kehitettiin tilastolliseen spektrimalliin perustuvaa tekstuurinyhdistämisalgoritmia. Sillä saavutettiin hyviä tuloksia, kun tilastollisten parametrien väliset riippuvuussuhteet olivat voimassa. Työn toisessa osassa erilaisia spektrikuvia tutkittiin käyttäen itsenäistä komponenttien analyysia (ICA). Seuraavia itsenäiseen komponenttien analyysiin tarkoitettuja algoritmia tarkasteltiin: JADE, kiinteän pisteen ICA ja momenttikeskeinen ICA. Tutkimuksissa painotettiin erottelun laatua. Paras erottelu saavutettiin JADE- algoritmilla, joskin erot muiden algoritmien välillä eivät olleet merkittäviä. Algoritmi jakoi kuvan kahteen itsenäiseen, joko korostuneeseen ja korostumattomaan tai kromaattiseen ja akromaattiseen, komponenttiin. Lopuksi pohditaan huipukkuuden suhdetta kuvan ominaisuuksiin, kuten korostuneisuuteen ja värikylläisyyteen. Työn viimeisessä osassa ehdotetaan mahdollisia jatkotutkimuskohteita.
Resumo:
We report the synthesis and study of a new series of oxovanadium (IV) dithiocarbamate adducts and derivatives with pyridine and cyclohexyl, di-iso-butyl, di-n-propyl, anilin, morpholin, piperidin and di-iso-propyl amines. The complexes have been characterized by analytical, magnetochemical, IR, visible-UV spectral and thermal studies, and are assigned the formulas [VO(L)2].py, where L=cyclohexyl, di-iso-butyl, di-n-propyl, anilin dithiocarbamate and [VO(OH)(L)(py)2]OH.H2O (L=morpholin, piperidin and di-iso-propyl dithiocarbamate). The effect of the adduct formation on the pV=0 bound is discussed in terms of the IR (V=O, V-S and V-N stretching frequencies) and electronic spectra (d-d transitions).
Resumo:
FeBr2 has reacted with an equivalent of mnt2- (mnt = cis-1,2-dicyanoethylene-1,2-dithiolate) and the α-diimine L (L = 1,10'-phenantroline, 2,2'-bipyridine) in THF solution, and followed by adding of t-butyl-isocyanide to give [Fe(mnt)(L)(t-BuNC)2] neutral compound. The products were characterized by infrared, UV-visible and Mössbauer spectroscopy, besides thermogravimetric and conductivity data. The geometry in the equilibrium was calculated by the density functional theory and the electronic spectrum by the time-dependent. The experimental and theoretical results in good agreement have defined an octahedral geometry with two isocyanide neighbours. The π→π* intraligand electronic transition was not observed for cis-isomers in the near-IR spectral region.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
Resumo:
The physico-chemical properties of the new 3d-4f heteronuclear complexes with general formula LnCu3(C11H8N2 O4Br)3·13H2O (where Ln = Pr, Eu, Gd, Tb, Er, Yb and H3(C11H8N2 O4Br) - 5-bromosalicylideneglycylglycine) were studied. The compounds were characterized by elemental, spectral and thermal analyses and magnetic measurements. The formation of Schiff base is evidenced by a strong band at ca. 1646-1650 cm-1 attributable to C=N stretching mode. The presence of water molecules is confirmed by broad absorptions with maximum at 3360 - 3368 cm-1. The Cu(II)-Ln(III) complexes are stable up to ca. 318 K. During dehydration process the water molecules are lost probably in two stages. The magnetic susceptibility data for these complexes change with temperature according to the Curie-Weiss law.
Resumo:
Rare-earth based upconverting nanoparticles (UCNPs) have attracted much attention due to their unique luminescent properties. The ability to convert multiple photons of lower energy to ones with higher energy through an upconversion (UC) process offers a wide range of applications for UCNPs. The emission intensities and wavelengths of UCNPs are important performance characteristics, which determine the appropriate applications. However, insufficient intensities still limit the use of UCNPs; especially the efficient emission of blue and ultraviolet (UV) light via upconversion remains challenging, as these events require three or more near-infrared (NIR) photons. The aim of the study was to enhance the blue and UV upconversion emission intensities of Tm3+ doped NaYF4 nanoparticles and to demonstrate their utility in in vitro diagnostics. As the distance between the sensitizer and the activator significantly affect the energy transfer efficiency, different strategies were explored to change the local symmetry around the doped lanthanides. One important strategy is the intentional co-doping of active (participate in energy transfer) or passive (do not participate in energy transfer) impurities into the host matrix. The roles of doped passive impurities (K+ and Sc3+) in enhancing the blue and UV upconversions, as well as in influencing the intense UV upconversion emission through excess sensitization (active impurity) were studied. Additionally, the effects of both active and passive impurity doping on the morphological and optical performance of UCNPs were investigated. The applicability of UV emitting UCNPs as an internal light source for glucose sensing in a dry chemistry test strip was demonstrated. The measurements were in agreement with the traditional method based on reflectance measurements using an external UV light source. The use of UCNPs in the glucose test strip offers an alternative detection method with advantages such as control signals for minimizing errors and high penetration of the NIR excitation through the blood sample, which gives more freedom for designing the optical setup. In bioimaging, the excitation of the UCNPs in the transparent IR region of the tissue permits measurements, which are free of background fluorescence and have a high signal-to-background ratio. In addition, the narrow emission bandwidth of the UCNPs enables multiplexed detections. An array-in-well immunoassay was developed using two different UC emission colours. The differentiation between different viral infections and the classification of antibody responses were achieved based on both the position and colour of the signal. The study demonstrates the potential of spectral and spatial multiplexing in the imaging based array-in-well assays.
Resumo:
Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.
Resumo:
The thesis entitled studies on the synthesis and transformations of a few 2(3H)- and 3(2H)- furanones. Furanones represent an interesting class of heterocyclic compounds, which constitute the central ring system of many natural products. The derivatives of furan is divided, depending on their structure 2(3H)-furanones(I), 2(5H)-furanones(II), and 3(2H)-furanones(III). Systems I&II are unsatured gama lactones known as ‘butenolides’. Compounds of this type also known as ‘crotonolactones’ based on the parent crotonic acid. In conclusion a number of 2(3H)-and 3(2H)- furanones were synthesized from dibenzoylalkene precursors and were characterized on the basis of spectral analytical and X-ray data. On direct irradiation 3,3-bis(4-chloropheneyl)-5-aryl-3H-furan -2-ones underwent decarbonylation to yield the corresponding alpha, beta- unsaturated carbonyl compounds and upon sensitized irradiation they underwent dimersation arising through a 2+2 cycloaddition reaction. Our studies on 3(2H)-furanones revealed that these compounds are thermally stable, while they undergo extensive decomposition to intractable mixtures under the influence of light. Similarly, the novel dibenzoylalkenes- type systems containing hetroatomatic rings synthesized by us also underwent extensive decomposition under the influence of heat. Some of the 3(2H)-furanones synthesized by us exhibit remarkable anti-proliferative activity.
Resumo:
The study deals with structural and spectral investigations of transition metal complexes of di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones. The main objective and scope of the work deals with di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones are quardridentate NNNS donor ligands. To chosen this ligand for study because, the ligands are prepared and characterized for the first time, since there are two pyridyl nitorgens, dimmers and polymers of complexes may result leading to interesting structural aspects. The work includes the preparation of the thiosemicarbzones and their structural and spectral studies, synthesis and spectral characterization of complexes of copper(II),,nickel(II),manganese(II), dioxovanadium(V),cobalt(III),zinc(II),cadmium(II) of the ligand HL, synthesis and spectral characterization of complexes of copper(II),manganese(II), of the ligand HL and the development of X-ray quality crystals and its X-ray diffraction studies. The structural characterization techniques are elemental analysis, conductivity measurements, magnetic measurements, electronic spectroscopy, H NMR spectroscopy, Infrared spectroscopy and X-ray crystallography.