986 resultados para Spatial database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Template matching by means of cross-correlation is common practice in pattern recognition. However, its sensitivity to deformations of the pattern and the broad and unsharp peaks it produces are significant drawbacks. This paper reviews some results on how these shortcomings can be removed. Several techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. New variants are also proposed and compared: least squares Discriminant Functions and the combined use of projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks are introduced in an attempt to improve filter design by the introduction of nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the concept of a composite performance index, brought from economic and business statistics, has gained popularity in the field of road safety. The construction of the Composite Safety Performance Index (CSPI) involves the following key steps: the selection of the most appropriate indicators to be aggregated and the method used to aggregate them.

Over the last decade, various aggregation methods for estimating the CSPI have been suggested in the literature. However, recent studies indicates that most of these methods suffer from many deficiencies at both the theoretical and operational level; these include the correlation and compensability between indicators, as well as their high “degree of freedom” which enables one to readily manipulate them to produce desired outcomes.

The purpose of this study is to introduce an alternative aggregation method for the estimation of the CSPI, which is free from the aforementioned deficiencies. In contrast with the current aggregation methods, which generally use linear combinations of road safety indicators to estimate a CSPI, the approach advocated in this study is based on non-linear combinations of indicators and can be summarized into the following two main steps: the pairwise comparison of road safety indicators and the development of marginal and composite road safety performance functions. The introduced method has been successfully applied to identify and rank temporal and spatial hotspots for Northern Ireland, using road traffic collision data recorded in the UK STATs19 database. The obtained results highlight the promising features of the proposed approach including its stability and consistency, which enables significantly reduced deficiencies associated with the current aggregation methods. Progressively, the introduced method could evolve into an intelligent support system for road safety assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the proliferation of geo-positioning and geo-tagging techniques, spatio-textual objects that possess both a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both location and textual description are gaining in prominence. However, the queries studied so far generally focus on finding individual objects that each satisfy a query rather than finding groups of objects where the objects in a group together satisfy a query.

We define the problem of retrieving a group of spatio-textual objects such that the group's keywords cover the query's keywords and such that the objects are nearest to the query location and have the smallest inter-object distances. Specifically, we study three instantiations of this problem, all of which are NP-hard. We devise exact solutions as well as approximate solutions with provable approximation bounds to the problems. In addition, we solve the problems of retrieving top-k groups of three instantiations, and study a weighted version of the problem that incorporates object weights. We present empirical studies that offer insight into the efficiency of the solutions, as well as the accuracy of the approximate solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the impact of policies to promote the adoption of LEED-certified buildings across CBSA in the United States. Drawing upon a unique database that combines data from a large number of sources and using a number of regression procedures, the determinants of the proportion LEED-certified space for more than 170 CBSA in the US is modeled. LEED-certified space still accounts for a relatively small proportion of commercial stock in all markets. The average proportion is less than 1%. There is no conclusive evidence of a positive impact of policy intervention on the levels of LEED-certified space. However, after accounting for bias introduced by non-random assignment of policies, we find preliminary evidence of a positive impact of city-level green building incentives. There is a significant positive association between market size and indicators of economic vitality on proportions of LEED-certified space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new database of weather and circulation type catalogs is presented comprising 17 automated classification methods and five subjective classifications. It was compiled within COST Action 733 "Harmonisation and Applications of Weather Type Classifications for European regions" in order to evaluate different methods for weather and circulation type classification. This paper gives a technical description of the included methods using a new conceptual categorization for classification methods reflecting the strategy for the definition of types. Methods using predefined types include manual and threshold based classifications while methods producing types derived from the input data include those based on eigenvector techniques, leader algorithms and optimization algorithms. In order to allow direct comparisons between the methods, the circulation input data and the methods' configuration were harmonized for producing a subset of standard catalogs of the automated methods. The harmonization includes the data source, the climatic parameters used, the classification period as well as the spatial domain and the number of types. Frequency based characteristics of the resulting catalogs are presented, including variation of class sizes, persistence, seasonal and inter-annual variability as well as trends of the annual frequency time series. The methodological concept of the classifications is partly reflected by these properties of the resulting catalogs. It is shown that the types of subjective classifications compared to automated methods show higher persistence, inter-annual variation and long-term trends. Among the automated classifications optimization methods show a tendency for longer persistence and higher seasonal variation. However, it is also concluded that the distance metric used and the data preprocessing play at least an equally important role for the properties of the resulting classification compared to the algorithm used for type definition and assignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-carnivores and humans are increasingly in conflict as humans encroach on their natural territory. As a result, many large-carnivore species have become endangered due to habitat destruction, prey reduction and retaliatory killings from conflicts. No global internet database, however, exists to document, monitor and evaluate these conflicts, particularly to take advantage of the growing spatial resources available. Using human-tiger conflicts in Malaysia and Sumatra as a case study, this project explores how such a database could be created. GIS was used to conduct multiple analyses on the data obtained about these conflicts. We conclude that a database would require data to be compiled according to a protocol based on these spatial scales: Point, Sub-State Polygon and Provincial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project (http://www.icttd.nl)-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website (http://www.tickbornezoonoses.org) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.