993 resultados para Spatial Empirical bayes Smoothing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The measure and estimation of income levels in Barcelona Metropolitan Area (BMA) goes back a long way. Using different approaches and focusing on different municipalities, there is a lot of work in the field. The majority of the literature has focused on the estimation of income levels using variables related to consumption. The empirical evidence on wage differentials has shown an important growth during 80’s and 90’s especially in United Kingdom and USA. Less is known on spatial distribution of inequality. This paper presents a new data set for analyzing spatial distribution of wage income. This data is obtained by matching Wage Structure Survey (WSS) with data from Census disaggregated by census tracts. In this way we have a unique data set with wage incomes for every census track for 36 municipalities belonging to BMA. We develop a descriptive analysis of spatial distribution, testing for spatial autocorrelation and use the family of Generalised Entropy Indices to measure inequality. Properties of the index allow us to decompose inequality into inter and intra-municipality measures. Since we have two cross-sectional data for WSS (1995-2002) we can also analyze the evolution of the inequality in this period of economic growth. Key words: spatial distribution of wages, spatial autocorrelation, inequality indices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial econometrics has been criticized by some economists because some model specifications have been driven by data-analytic considerations rather than having a firm foundation in economic theory. In particular this applies to the so-called W matrix, which is integral to the structure of endogenous and exogenous spatial lags, and to spatial error processes, and which are almost the sine qua non of spatial econometrics. Moreover it has been suggested that the significance of a spatially lagged dependent variable involving W may be misleading, since it may be simply picking up the effects of omitted spatially dependent variables, incorrectly suggesting the existence of a spillover mechanism. In this paper we review the theoretical and empirical rationale for network dependence and spatial externalities as embodied in spatially lagged variables, arguing that failing to acknowledge their presence at least leads to biased inference, can be a cause of inconsistent estimation, and leads to an incorrect understanding of true causal processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical studies on the determinants of industrial location typically use variables measured at the available administrative level (municipalities, counties, etc.). However, this amounts to assuming that the effects these determinants may have on the location process do not extent beyond the geographical limits of the selected site. We address the validity of this assumption by comparing results from standard count data models with those obtained by calculating the geographical scope of the spatially varying explanatory variables using a wide range of distances and alternative spatial autocorrelation measures. Our results reject the usual practice of using administrative records as covariates without making some kind of spatial correction. Keywords: industrial location, count data models, spatial statistics JEL classification: C25, C52, R11, R30

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Praziquantel chemotherapy has been the focus of the Schistosomiasis Control Program in Brazil for the past two decades. Nevertheless, information on the impact of selective chemotherapy against Schistosoma mansoni infection under the conditions confronted by the health teams in endemic municipalities remains scarce. This paper compares the spatial pattern of infection before and after treatment with either a 40 mg/kg or 60 mg/kg dose of praziquantel by determining the intensity of spatial cluster among patients at 180 and 360 days after treatment. The spatial-temporal distribution of egg-positive patients was analysed in a Geographic Information System using the kernel smoothing technique. While all patients became egg-negative after 21 days, 17.9% and 30.9% reverted to an egg-positive condition after 180 and 360 days, respectively. Both the prevalence and intensity of infection after treatment were significantly lower in the 60 mg/kg than in the 40 mg/kg treatment group. The higher intensity of the kernel in the 40 mg/kg group compared to the 60 mg/kg group, at both 180 and 360 days, reflects the higher number of reverted cases in the lower dose group. Auxiliary, preventive measures to control transmission should be integrated with chemotherapy to achieve a more enduring impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim  Recently developed parametric methods in historical biogeography allow researchers to integrate temporal and palaeogeographical information into the reconstruction of biogeographical scenarios, thus overcoming a known bias of parsimony-based approaches. Here, we compare a parametric method, dispersal-extinction-cladogenesis (DEC), against a parsimony-based method, dispersal-vicariance analysis (DIVA), which does not incorporate branch lengths but accounts for phylogenetic uncertainty through a Bayesian empirical approach (Bayes-DIVA). We analyse the benefits and limitations of each method using the cosmopolitan plant family Sapindaceae as a case study.Location  World-wide.Methods  Phylogenetic relationships were estimated by Bayesian inference on a large dataset representing generic diversity within Sapindaceae. Lineage divergence times were estimated by penalized likelihood over a sample of trees from the posterior distribution of the phylogeny to account for dating uncertainty in biogeographical reconstructions. We compared biogeographical scenarios between Bayes-DIVA and two different DEC models: one with no geological constraints and another that employed a stratified palaeogeographical model in which dispersal rates were scaled according to area connectivity across four time slices, reflecting the changing continental configuration over the last 110 million years.Results  Despite differences in the underlying biogeographical model, Bayes-DIVA and DEC inferred similar biogeographical scenarios. The main differences were: (1) in the timing of dispersal events - which in Bayes-DIVA sometimes conflicts with palaeogeographical information, and (2) in the lower frequency of terminal dispersal events inferred by DEC. Uncertainty in divergence time estimations influenced both the inference of ancestral ranges and the decisiveness with which an area can be assigned to a node.Main conclusions  By considering lineage divergence times, the DEC method gives more accurate reconstructions that are in agreement with palaeogeographical evidence. In contrast, Bayes-DIVA showed the highest decisiveness in unequivocally reconstructing ancestral ranges, probably reflecting its ability to integrate phylogenetic uncertainty. Care should be taken in defining the palaeogeographical model in DEC because of the possibility of overestimating the frequency of extinction events, or of inferring ancestral ranges that are outside the extant species ranges, owing to dispersal constraints enforced by the model. The wide-spanning spatial and temporal model proposed here could prove useful for testing large-scale biogeographical patterns in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What explains the spatial distribution of wages across US counties? I find that two of the most important factors are spatial technology diffusion and externalities due to the aggregate scale of production. One empirical finding supporting the importance of spatial technology diffusion is that average wages in a county decrease with the average level of schooling in neighboring counties when employment in the county and average wages in neighboring counties are held constant. All empirical results are obtained using anovel instrument for (endogenous) employment at the county-leveland take into account other factors (e.g. productivity-differencesacross states, climate) that may determine wages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework. Keywords: Polarization, Core-Periphery, Ecological Footprint

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys the literature on the implications of trade liberalisation for intra-national economic geographies. Three results stand out. First, neither urban systems models nor new economic geography models imply a robust prediction for the impact of trade openness on spatial concentration. Whether trade promotes concentration or dispersion depends on subtle modelling choices among which it is impossible to adjudicate a priori. Second, empirical evidence mirrors the theoretical indeterminacy: a majority of cross-country studies find no significant effect of openness on urban concentration or regional inequality. Third, the available models predict that, other things equal, regions with inherently less costly access to foreign markets, such as border or port regions, stand to reap the largest gains from trade liberalisation. This prediction is confirmed by the available evidence. Whether trade liberalisation raises or lowers regional inequality therefore depends on each country's specific geography.