996 resultados para Space medicine
Resumo:
Tissue engineering of cartilage, i.e., the in vitro cultivation of cartilage cells on synthetic polymer scaffolds, was studied on the Mir Space Station and on Earth. Specifically, three-dimensional cell-polymer constructs consisting of bovine articular chondrocytes and polyglycolic acid scaffolds were grown in rotating bioreactors, first for 3 months on Earth and then for an additional 4 months on either Mir (10−4–10−6 g) or Earth (1 g). This mission provided a unique opportunity to study the feasibility of long-term cell culture flight experiments and to assess the effects of spaceflight on the growth and function of a model musculoskeletal tissue. Both environments yielded cartilaginous constructs, each weighing between 0.3 and 0.4 g and consisting of viable, differentiated cells that synthesized proteoglycan and type II collagen. Compared with the Earth group, Mir-grown constructs were more spherical, smaller, and mechanically inferior. The same bioreactor system can be used for a variety of controlled microgravity studies of cartilage and other tissues. These results may have implications for human spaceflight, e.g., a Mars mission, and clinical medicine, e.g., improved understanding of the effects of pseudo-weightlessness in prolonged immobilization, hydrotherapy, and intrauterine development.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Nonlinear, non-stationary signals are commonly found in a variety of disciplines such as biology, medicine, geology and financial modeling. The complexity (e.g. nonlinearity and non-stationarity) of such signals and their low signal to noise ratios often make it a challenging task to use them in critical applications. In this paper we propose a new neural network based technique to address those problems. We show that a feed forward, multi-layered neural network can conveniently capture the states of a nonlinear system in its connection weight-space, after a process of supervised training. The performance of the proposed method is investigated via computer simulations.
Resumo:
We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.
Resumo:
We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.
Resumo:
This is the first time a multidisciplinary team has employed an iterative co-design method to determine the ergonomic layout of an emergency ambulance treatment space. This process allowed the research team to understand how treatment protocols were performed and developed analytical tools to reach an optimum configuration towards ambulance design standardisation. Fusari conducted participatory observations during 12-hour shifts with front-line ambulance clinicians, hospital staff and patients to understand the details of their working environments whilst on response to urgent and emergency calls. A simple yet accurate 1:1 mock-up of the existing ambulance was built for detailed analysis of these procedures through simulations. Paramedics were called in to participate in interviews and role-playing inside the model to recreate tasks, how they are performed, the equipment used and to understand the limitations of the current ambulance. The use of Link Analysis distilled 5 modes of use. In parallel, an exhaustive audit of all equipment and consumables used in ambulances was performed (logging and photography) to define space use. These developed 12 layout options for refinement and CAD modelling and presented back to paramedics. The preferred options and features were then developed into a full size test rig and appearance model. Two key studies informed the process. The 2005 National Patient Safety Agency funded study “Future Ambulances” outlined 9 design challenges for future standardisation of emergency vehicles and equipment. Secondly, the 2007 EPSRC funded “Smart Pods” project investigated a new system of mobile urgent and emergency medicine to treat patients in the community. A full-size mobile demonstrator unit featuring the evidence-based ergonomic layout was built for clinical tests through simulated emergency scenarios. Results from clinical trials clearly show that the new layout improves infection control, speeds up treatment, and makes it easier for ambulance crews to follow correct clinical protocols.
Resumo:
In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.