870 resultados para Soviet and Post-Soviet Studies
Resumo:
We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve.
Resumo:
High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.
TRANSCRIPTIONAL AND POST-TRANSLATIONAL MECHANISMS CONTRIBUTE TO MAINTENANCE OF REST IN NEURAL TUMORS
Resumo:
The RE-1 silencing transcription factor (REST) is an important regulator of normal nervous system development. It negatively regulates neuronal lineage specification in neural progenitors by binding to its consensus RE-1 element(s) located in the regulatory region of its target neuronal differentiation genes. The developmentally coordinated down-regulation of REST mRNA and protein in neural progenitors triggers terminal neurogenesis. REST is overexpressed in pediatric neural tumors such as medulloblastoma and neuroblastoma and is associated with poor neuronal differentiation. High REST protein correlate with poor prognosis for patients with medulloblastoma, however similar studies have not been done with neuroblastoma patients. Mechanism(s) underlying elevated REST levels medulloblastoma and neuroblastoma are unclear, and is the focus of this thesis project. We discovered that transcriptional and post-translational mechanisms govern REST mis-regulation in medulloblastoma and neuroblastoma. In medulloblastoma, REST transcript is aberrantly elevated in a subset of patient samples. Using loss of function and gain of function experiments, we provide evidence that the Hairy Enhancer of Split (HES1) protein represses REST transcription in medulloblastoma cell lines, modulates the expression of neuronal differentiation genes, and alters the survival potential of these cells in vitro. We also show that REST directly represses its own expression in an auto-regulatory feedback loop. Interestingly, our studies identified a novel interaction between REST and HES1. We also observed their co-occupancy at the RE-1 sites, thereby suggesting potential for co-regulation of REST expression. Our pharmacological studies in neuroblastoma using retinoic acid revealed that REST levels are controlled by transcriptional and post-transcriptional mechanisms. Post-transcriptional mechanisms are mediated by modulation of E3 ligase or REST, SCFβ-TRCP, and contribute to resistance of some cells to retinoic acid treatment.
Resumo:
Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324–348) and frog (amino acids 330–354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.
Resumo:
no. 1. St. Paul aircraft parts workers in wartime.--no. 2. 1. Labor U.S.-1914- 2. Wages-U.S. 3. World war, 1939-1945-Economic aspects-U.S. Mobile shipyard workers in war time.--no. 3. War and post-war experiences of skilled cotton textile workers in New England.--no. 4. Wartime shipbuilding workers of Wilmington, Delaware.--no. 5. Workers' experiences during the first phase of reconversion.--no. 6. Southern California aircraft workers in wartime.
Resumo:
Post-traumatic stress disorder (PTSD) is reported in some studies to be associated with increased glucocorticoid (GC) sensitivity. Two common glucocorticoid receptor (GR) potymorphisms (N363S and 8cll) appear to contribute to the population variance in GC sensitivity. There is some evidence that there may be a genetic predisposition to PTSD. Hence we studied 118 Vietnam war veterans with PTSD for (i) GR polymorphisms, particularly the N363S and the Bcll polymorphisms which are thought to be GC sensitising, and (ii) two measures of GC sensitivity, the tow-dose 0.25 mg dexamethasone suppression test (LD-DST) and the dermal vasoconstrictor assay (DVVA). The DST and GR polymorphisms were also performed in 42 combat exposed Vietnam war veterans without PTSD. Basal plasma cortisol levels were not significantly different in PTSD (399.5 +/- 19.2 nmol/L, N=75) and controls (348.6 +/- 23.0 nmol/L, N = 33) and the LD-DST resulted in similar cortisol suppression in both groups (45.6 +/- 3.2 vs. 40.8 +/- 4.1%). The cortisol suppression in PTSD patients does not correlate with Clinician Administered PTSD Scores (CAPS), however there was a significant association between the Bcll GG genotype and low basal cortisol levels in PTSD (P=0.048). The response to the DVVA was similar to controls (945 +/- 122, N = 106 vs. 730 +/- 236, N = 28, P = 0.42). PTSD patients with the GG genotype, however, tended to be more responsive to DVVA and in this group the DVVA correlated with higher CAPS scores. The only exon 2 GR polymorphisms detected were the R23K and N363S. Heterozygosity for the N363S variant in PTSD, at 5.1% was not more prevalent than in other population studies of the N363S polymorphism in Caucasians (6.0-14.8%). The GG genotype of the Bcll polymorphism found to be associated with increased GC sensitivity in many studies showed a tendency towards increased response with DVVA and correlated with higher CAPS scores. In conclusion, the N363S and Bcll GR polymorphisms were not more frequent in PTSD patients than controls and reported population frequencies. Our PTSD group did not display GC hypersensitivity, as measured by the LD-DST and DVVA. In a subset of PTSD patients with the Bcll GG genotype, CAPS scores and basal cortisol Levels were negatively correlated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Lutein and zeaxanthin are carotenoids that are selectively taken up into the macula of the eye, where they are thought to protect against the development of age-related macular degeneration. They are obtained from dietary sources, with the highest concentrations found in dark green leafy vegetables, such as kale and spinach. In this Review, compositional variations due to variety/cultivar, stage of maturity, climate or season, farming practice, storage, and processing effects are highlighted. Only data from studies which report on lutein and zeaxanthin content in foods are reported. The main focus is kale; however, other predominantly xanthophyll containing vegetables such as spinach and broccoli are included. A small amount of data about exotic fruits is also referenced for comparison. The qualitative and quantitative composition of carotenoids in fruits and vegetables is known to vary with multiple factors. In kale, lutein and zeaxanthin levels are affected by pre-harvest effects such as maturity, climate, and farming practice. Further research is needed to determine the post-harvest processing and storage effects of lutein and zeaxanthin in kale; this will enable precise suggestions for increasing retinal levels of these nutrients.
Resumo:
The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology
Resumo:
The current thesis examines memory bias for state anxiety prior to academic achievement situations like writing an exam and giving a speech. The thesis relies on the reconstruction principle, which assumes that memories for past emotions are reconstructed rather than stored permanently and accurately. This makes them prone to memory bias, which is af-fected by several influencing factors. A major aim is to include four important influencing factors simultaneously. Early research on mood and emotional autobiographical memory found evidence for the existence of a propositional associative network (Bower, 1981; Col-lins & Loftus, 1975), leading to mood congruent recall. But empirical findings gave also strong evidence for the existence of mood incongruent recall for one’s own emotions, which was for example linked to mood regulation via mood repair (e.g. Clark & Isen, 1982), which seems to be associated to the personality traits extraversion and neuroticism (Lischetzke & Eid, 2006; Ng & Diener, 2009). Moreover, neuroticism and trait anxiety are related to rumination, which is seen as negative post-event-processing (e.g. Wells & Clark, 1997). Overall, the elapsed time since the emotional event happened should have an impact on recall of emotions. Following the affect infusion model by Robinson and Clore (2002a), the influence of personality on memory bias should increase over time. Therefore, three longitudinal studies were realized, using naturally occurring as well as laboratory settings. The used paradigm was equivalent in all studies. Subjects were asked about their actual state anxiety prior to an academic achievement situation. Directly after the situation, cur-rent mood and recall of former anxiety were assessed. The same procedure was repeated a few weeks later. Personality traits and post-event-processing were also assessed. The results suggest a need to have a differentiated view on predicting memory bias. Study 1 (N = 131) as well as study 3 (N = 53) found evidence for mood incongruent memory in the sense of mood repair and downward regulation as a function of personality. Rumination was found to cause stable overestimation of pre-event anxiety in study 2 (N = 141) as well as in study 3. Although the relevance of the influencing factors changed over time, an increasing relevance of personality could not consistently be observed. The tremendously different effects of the laboratory study 2 indicated that such settings are not appropriate to study current issues. Theoretical and psychotherapeutically relevant conclusions are drawn and several limitations are discussed.
Resumo:
One of the greatest sources of biologically active compounds is natural products. Often these compounds serve as platforms for the design and development of novel drugs and therapeutics. The overwhelming amount of genomic information acquired in recent years has revealed that ribosomally synthesized and post-translationally modified natural products are much more widespread than originally anticipated. Identified in nearly all forms of life, these natural products display incredible structural diversity and possess a wide range of biological functions that include antimicrobial, antiviral, anti-inflammatory, antitumor, and antiallodynic activities. The unique pathways taken to biosynthesize these compounds offer exciting opportunities for the bioengineering of these complex molecules. The studies described herein focus on both the mode of action and biosynthesis of antimicrobial peptides. In Chapter 2, it is demonstrated that haloduracin, a recently discovered two-peptide lantibiotic, possesses nanomolar antimicrobial activity against a panel of bacteria strains. The potency of haloduracin rivals that of nisin, an economically and therapeutically relevant lantibiotic, which can be attributed to a similar dual mode of action. Moreover, it was demonstrated that this lantibiotic of alkaliphile origin has better stability at physiological pH than nisin. The molecular target of haloduracin was identified as the cell wall peptidoglycan precursor lipid II. Through the in vitro biosynthesis of haloduracin, several analogues of Halα were prepared and evaluated for their ability to inhibit peptidoglycan biosynthesis as well as bacterial cell growth. In an effort to overcome the limitations of in vitro biosynthesis strategies, a novel strategy was developed resulting in a constitutively active lantibiotic synthetase enzyme. This methodology, described in Chapter 3, enabled the production of fully-modified lacticin 481 products with proteinogenic and non-proteinogenic amino acid substitutions. A number of lacticin 481 analogues were prepared and their antimicrobial activity and ability to bind lipid II was assessed. Moreover, site-directed mutagenesis of the constitutively active synthetase resulted in a kinase-like enzyme with the ability to phosphorylate a number of peptide substrates. The hunt for a lantibiotic synthetase enzyme responsible for installing the presumed dehydro amino acids and a thioether ring in the natural product sublancin, led to the identification and characterization of a unique post-translational modification. The studies described in Chapter 4, demonstrate that sublancin is not a lantibiotic, but rather an unusual S-linked glycopeptide. Its structure was revised based on extensive chemical, biochemical, and spectroscopic characterization. In addition to structural investigation, bioinformatic analysis of the sublancin gene cluster led to the identification of an S-glycosyltransferase predicted to be responsible for the post-translational modification of the sublancin precursor peptide. The unprecedented glycosyltransferase was reconstituted in vitro and demonstrated remarkable substrate promiscuity for both the NDP-sugar co-substrate as well as the precursor peptide itself. An in vitro method was developed for the production of sublancin and analogues which were subsequently evaluated in bioactivity assays. Finally, a number of putative biosynthetic gene clusters were identified that appear to harbor the necessary genes for production of an S-glycopeptide. An additional S-glycosyltransferase with more favorable intrinsic properties including better expression, stability, and solubility was reconstituted in vitro and demonstrated robust catalytic abilities.
Resumo:
Over forty million foreign-born residents currently live in the United States. Latinos make up the largest population of immigrants living in the U.S. Previous research suggests that Latino immigrants often experience pre-migration stressors, such as traumatic experiences, political upheaval, and unplanned migration. These stressors may have a negative impact on immigrants’ post-migration mental health. Research also suggests that the post-migration climate of the receiving community may inform the connection between pre-migration experiences and post-migration mental health. The current study examined the relationship between Latino immigrants’ reasons for migration, migration planning, and pre-migration experience of political and/or interpersonal violence, and post-migration symptoms of psychological distress. In addition to examining the effect of these pre-migration factors, the current study also examined the community “climate” experienced by Latino immigrants post-migration by assessing the influence of three post-migration factors: 1) community support and engagement, 2) discrimination, and 3) employment. The study was a secondary analysis of data collected for the National Latino and Asian American Study, which focused on the mental health and service utilization of Latinos and Asian Americans. Participants included 1,629 Latino immigrants from across the United States. Results indicated that pre-migration experience of political and/or interpersonal trauma, post-migration experience of discrimination, and female sex were positively associated with psychological distress. Post-migration employment was negatively associated with psychological distress. In addition, discrimination modified the association between unplanned migration and psychological distress; the relationship between unplanned migration and psychological distress decreased for participants who reported more discrimination. Furthermore, employment modified the association between political and/or interpersonal trauma and psychological distress; the connection between trauma and psychological distress increased among those who reported having less employment. Recommendations for further research were presented. Policy and clinical practice implications were discussed, particularly given the current climate of high anti-immigrant sentiment and hostility in the U.S.
Resumo:
Freeze drying technology can give good quality attributes of vegetables and fruits in terms of color, nutrition, volume, rehydration kinetics, stability during storage, among others, when compared with solely air dried ones. However, published scientific works showed that treatments applied before and after air dehydration are effective in food attributes, improving its quality. Therefore, the hypothesis of the present thesis was focus in a vast research of scientific work that showed the possibility to apply a pre-treatment and a post-treatment to food products combined with conventional air drying aiming being close, or even better, to the quality that a freeze dried product can give. Such attributes are the enzymatic inactivation, stability during storage, drying and rehydration kinetics, color, nutrition, volume and texture/structure. With regard to pre-treatments, the ones studied along the present work were: water blanching, steam blanching, ultrasound, freezing, high pressure and osmotic dehydration. High electric pulsed field was also studied but the food attributes were not explained on detailed. Basically, water and steam blanching showed to be adequate to inactivate enzymes in order to prevent enzymatic browning and preserve the product quality during long storage periods. With regard to ultrasound pre-treatment the published results pointed that ultrasound is an effective pre-treatment to reduce further drying times, improve rehydration kinetics and color retention. On the other hand, studies showed that ultrasound allow sugars losses and, in some cases, can lead to cell disruption. For freezing pre-treatment an overall conclusion was difficult to draw for some food attributes, since, each fruit or vegetable is unique and freezing comprises a lot of variables. However, for the studied cases, freezing showed to be a pre-treatment able to enhance rehydration kinetics and color attributes. High pressure pre-treatment showed to inactivate enzymes improving storage stability of food and showed to have a positive performance in terms of rehydration. For other attributes, when high pressure technology was applied, the literature showed divergent results according with the crops used. Finally, osmotic dehydration has been widely used in food processing to incorporate a desired salt or sugar present in aqueous solution into the cellular structure of food matrix (improvement of nutrition attribute). Moreover, osmotic dehydration lead to shorter drying times and the impregnation of solutes during osmose allow cellular strengthens of food. In case of post-treatments, puffing and a new technology denominated as instant controlled pressure drop (DIC) were reported in the literature as treatments able to improve diverse Abstract Effect of Pre-treatments and Post-treatments on Drying Products x food attributes. Basically, both technologies are similar where the product is submitted to a high pressure step and the process can make use of different heating mediums such as CO2, steam, air and N2. However, there exist a significant difference related with the final stage of both which can comprise the quality of the final product. On the other hand, puffing and DIC are used to expand cellular tissues improving the volume of food samples, helping in rehydration kinetics as posterior procedure, among others. The effectiveness of such pre and/or post-treatments is dependent on the state of the vegetables and fruits used which are also dependent of its cellular structure, variety, origin, state (fresh, ripe, raw), harvesting conditions, etc. In conclusion, as it was seen in the open literature, the application of pre-treatments and post-treatments coupled with a conventional air dehydration aim to give dehydrated food products with similar quality of freeze dried ones. Along the present Master thesis the experimental data was removed due to confidential reasons of the company Unilever R&D Vlaardingen