988 resultados para Southern oscillation
Resumo:
The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.
Resumo:
El VSLE, desde el año 2002, reemergió como agente etiológico de encefalitis en humanos en América del Sur, generando casos aislados en Argentina. Córdoba sufrió recientemente la introducción de los virus Dengue y VWN y la emergencia del virus SLE como patógeno causante de encefalitis en humanosel cual sorpresivamente, en el verano-otoño de 2005, produjo por primera vez una epidemia de encefalitis en humanos en Córdoba ciudad, inédita para América del sur. Nuestros estudios permitieron conocer que el ciclo de transmisión estaría integrado por mosquitos Cx quinquefasciatus y Cx. interfor y palomas Zenaida auriculata y Columbina picui.Sobre VWN, estrechamente relacionado a VSLE, los primeros antecedentes de actividad en Argentina son del año 2006. Sin embargo, en poblaciones silvestres de aves, confirmamos por seroprevalencia su actividad desde fines del año 2004. Desconocemos el ciclo del VWN en Argentina, aunque, demostramos preliminarmente que Columbina picui actuaría como hospedador en el ciclo de mantenimiento del virus. Estos resultados similares a los obtenidos para el VSLE indicarían que ambos virus podrían compartir hospedadores aviares en Argentina.Las escasas notificaciones sobre WNV en humanos en el país,muestran registros de casos de encefalitis por este virus en las provincias de Chaco, Córdoba y Entre Ríos en 2006 y en Córdoba, Formosa, y Santa Fe en 2007.En referencia a virus Dengue, en el año 1997 ocurrieron los primeros casos autóctonos de esta enfermedad ( Degue 2), en la provincia de Salta, con un total acumulado de casos hasta el 2007 de 4700. En la epidemia ocurrida recientemente en el 2009 el número de casos confirmados por laboratorio y/o nexo epidemiológico superó los 25.000.El virus DEN, junto con los virus SLE y WN co-circulan en tiempo y espacio en las regiones centrales y norte de nuestro país, generando complicaciones a la hora del diagnóstico de casos febriles.Los factores que provocaron la re-emergencia del VSLE y emergencia de los virus DEN y WN en la región central de Argentina se desconocen al presente. La variabilidad climática ligada a ENSO ( El NIño / Southern oscillation) ha demostrado incrementar las enfermedades de transmisión vectorial tales como encefalitis por Murray Valley, malaria, bluuetongue .Considerando que el cambio en las condiciones climáticas y el uso de la tierra observadas en la ciudad de Córdoba y zona rural del arco sur de la laguna de Mar Chiquita podrían influir en la actividad espacio-temporal de los virus DEN, SLE y WN, el objetivo de proyecto es determinar la influencia de las variaciones climáticas y modificaciones ambientales sobre la actividad de flavivirus de importancia sanitaria en las zonas seleccionadas de la provincia de Córdoba. Se generará una Base de Datos obtenidos sobre mosquitos ,aves y metereológicos retrospectivos y prospectivos que serán sometidos A Diversos Análisis Estadísticos. Se desarrollará y aplicará un SIG Para El Estudio De La Influencia De Modificaciones Ambientales Y Climáticas Sobre La Emergencia De Flavivirus. Se Realizarán Inoculaciones Experimentales En Aves Domésticas Y Silvestres A Fin De Evaluar Su Rol Como Hospedadores. Se Realizarán Estudios Experimentales De competencia Vectorial De Aedes Aegypti, Culex Interfor Y Cx. Quinquefasciatus.Se estudiaran factores ambientales y ecológicos de criaderos de Cx quinquefasciatus En La Ciudad De Córdoba Que Afectan Sus Dinámicas Poblacionales Y Factibles De Ser Aplicados En El Diseño De Planes De Vigilancia De Los Virus Sle Y Wn Y Control De Vectores.Así También Se Desarrollarará Un Modelo Para Predecir Posibles CriadeMediante El Uso De Sensores Remotos Satelitales Se Estudiaran Las Fluctuaciónes Espacio-Temporal De Ae. Aegypti.El proyecto brindará la información necesaria para analizar el rol de las variaciones por el cambio climático que sufre la región en la emergencia de enfermedades virales endémicas de transmisión vectorial.
Resumo:
Parasitological analysis of 237 Menticirrhus ophicephalus, 124 Paralonchurus peruanus, 249 Sciaena deliciosa, 50 Sciaena fasciata and 308 Stellifer minor from Callao (Perú) yielded 37 species of metazoan parasites (14 Monogenea, 11 Copepoda, 4 Nematoda, 3 Acanthocephala, 1 Digenea, 1 Aspidobothrea, 1 Eucestoda, 1 Isopoda and 1 Hirudinea). Only one species, the copepoda Bomolochus peruensis, was common to all five hosts. The majority of the components of the infracommunities analyzed are ectoparasites. The Brillouin index (H) and evenness (J´) were applied to the fully sampled metazoan parasite infracommunities. High values of prevalence and mean abundance of infection are associated to the polyonchoinean monogeneans; the low values of J' reinforce the strong dominance of this group in the studied communities. The paucity of the endoparasite fauna may be a consequence of the unstable environment due to an upwelling system, aperiodically affected by the El Niño Southern Oscillation phenomena.
Resumo:
Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990’s. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes.
Resumo:
Biogeochemical cycles and sedimentary records in lakes are related to climate controls on hydrology and catchment processes. Changes in the isotopic imposition of the diatom frustules (δ 18 O diatom and δ 13 C diatom ) in lacustrine sediments can be used to reconstruct palaeoclimatic and palaeoenvironmental changes. The Lago Chungará (Andean Altiplano, 18°15 ′ S, 69°10 ′ W, 4520 masl) diatomaceous laminated sediments are made up of white and green multiannual rhythmites. White laminae were formed during short-term diatom super-blooms, and are composed almost exclusively of large-sized Cyclostephanos andinus.These diatoms bloom during mixing events when recycled nutrients from the bottom waters are brought to the surface and/or when nutrients are introduced from the catchment during periods of strong runoff. Conversely, the green laminae are thought to have been deposited over several years and are composed of a mixture of diatoms (mainly smaller valves of C. andinus and Discostella stelligera ) and organic matter. These green laminae reflect the lake's hydrological recovery from a status favouring the diatom super-blooms (white laminae) towards baseline conditions. δ 18 O diatom and δ 13 C diatom from 11,990 to 11,530 cal years BP allow us to reconstruct shifts in the precipitation/evaporation ratio and changes in the lake water dissolved carbon concentration, respectively. δ 18 O diatom values indicate that white laminae formation occurred mainly during low lake level stages, whereas green laminae formation generally occurred during high lake level stages. The isotope and chronostratigraphical data together suggest that white laminae deposition is caused by extraordinary environmental events. El Niño-Southern Oscillation and changes in solar activity are the most likely climate forcing mechanisms that could trigger such events, favouring hydrological changes at interannual-to-decadal scale. This study demonstrates the potential for laminated lake sediments to document extreme pluriannual events.
Resumo:
The thesis attempts to study the changes in oceanographic parameters associated with extreme climatic events,the influence of oceanographic as well as meteorological parameters on fishes.The characteristics of major pelagic fishes of southwest coast of India(Oil sardine and Indian mackerel) have been described here.A description on study area and period of study is also described .The impact of extreme climatic events on the oceanographic variability of Eastern Arabian Sea.The extreme climatic event,the Indian Ocean Dipole associated with EI Nino Southern Oscillation is taken into consideration.The variability in oil sardine and mackerel landings of southwest coast of India during the study period.The trend analysis of the landings has been done and also a prediction model is applied for the landings.The influence of environmental parameters on oil sardine as well as mackerel fishery has been explained .With regression analysis ,the significant relation between environmental parameters and fish landings are also been recognized.The prediction of landings is done with these environmental parameters.
Resumo:
Tropical cyclones genesis, movement and intensification are highly dependent on its environment both oceanic and atmospheric. This thesis has made a detailed study on the environmental factors related to tropical cyclones of North Indian Ocean basin. This ocean basin has produced only 6% of the global tropical cyclones annually but it has caused maximum loss of human life associated with the strong winds, heavy rain and particularly storm surges that accompany severe cyclones as they strike the heavily populated coastal areas. Atmospheric factors studied in the thesis are the moisture content of the atmosphere, instability of the atmosphere that produces thunderstorms which are the main source of energy for the tropical cyclone, vertical wind shear to which cyclones are highly sensitive and the Sub-Tropical westerly Jetsteram and its Asian high speed center. The oceanic parameters studied are sea surface temperature and heat storage in the top layer of the ocean. A major portion of the thesis has dealt with the three temporal variabilities of tropical cyclone frequency namely intra-seasonal (mainly the influence of Madden Julian Oscillation), inter- annual (the relation with El Nino Southern Oscillation) and decadal variabilities. Regarding decadal variability, a prominent four decade oscillation in the frequency of both tropical cyclones and monsoon depressions unique to the Indian Ocean basin has been brought out. The thesis consists of 9 chapters.
Resumo:
A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.
Resumo:
We suggest that climate variability in Europe for the “pre-industrial” period 1500–1900 is fundamentally a consequence of internal fluctuations of the climate system. This is because a model simulation, using fixed pre-industrial forcing, in several important aspects is consistent with recent observational reconstructions at high temporal resolution. This includes extreme warm and cold seasonal events as well as different measures of the decadal to multi-decadal variance. Significant trends of 50-year duration can be seen in the model simulation. While the global temperature is highly correlated with ENSO (El Nino- Southern Oscillation), European seasonal temperature is only weakly correlated with the global temperature broadly consistent with data from ERA-40 reanalyses. Seasonal temperature anomalies of the European land area are largely controlled by the position of the North Atlantic storm tracks. We believe the result is highly relevant for the interpretation of past observational records suggesting that the effect of external forcing appears to be of secondary importance. That variations in the solar irradiation could have been a credible cause of climate variations during the last centuries, as suggested in some previous studies, is presumably due to the fact that the models used in these studies may have underestimated the internal variability of the climate. The general interpretation from this study is that the past climate is just one of many possible realizations and thus in many respects not reproducible in its time evolution with a general circulation model but only reproducible in a statistical sense.
Resumo:
Understanding links between the El Nino-Southern Oscillation (ENSO) and snow would be useful for seasonal forecasting, but also for understanding natural variability and interpreting climate change predictions. Here, a 545-year run of the general circulation model HadCM3, with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the mean SWE and skew the distribution towards lower values, and vice versa during negative ENSO events. This is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distribution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are seen to exist from the previous June-July-August (JJA) ENSO index onwards, and are weakly detected in 50-year subsections of the control run, but only a shifted North American response can be detected in the anaylsis of 40 years of ERA40 reanalysis data. The ENSO signal in SWE from the long run could still contribute to regional predictions although it would be a weak indicator only
Resumo:
We describe numerical simulations designed to elucidate the role of mean ocean salinity in climate. Using a coupled atmosphere-ocean general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is approximately doubled from its present observed value, by adding 35 psu everywhere in the ocean. The salinity increase produces a rapid global-mean sea-surface warming of C within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global-mean sea-surface cooling of C within a few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of the thermohaline circulation (THC) or El Niño/Southern Oscillation (ENSO). The mean strength of the Atlantic meridional overturning is reduced by 20% and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the equilibrated global-mean sea-surface temperature increase caused by doubling carbon dioxide is reduced by 10%. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.
Resumo:
A new spectral-based approach is presented to find orthogonal patterns from gridded weather/climate data. The method is based on optimizing the interpolation error variance. The optimally interpolated patterns (OIP) are then given by the eigenvectors of the interpolation error covariance matrix, obtained using the cross-spectral matrix. The formulation of the approach is presented, and the application to low-dimension stochastic toy models and to various reanalyses datasets is performed. In particular, it is found that the lowest-frequency patterns correspond to largest eigenvalues, that is, variances, of the interpolation error matrix. The approach has been applied to the Northern Hemispheric (NH) and tropical sea level pressure (SLP) and to the Indian Ocean sea surface temperature (SST). Two main OIP patterns are found for the NH SLP representing respectively the North Atlantic Oscillation and the North Pacific pattern. The leading tropical SLP OIP represents the Southern Oscillation. For the Indian Ocean SST, the leading OIP pattern shows a tripole-like structure having one sign over the eastern and north- and southwestern parts and an opposite sign in the remaining parts of the basin. The pattern is also found to have a high lagged correlation with the Niño-3 index with 6-months lag.
Resumo:
Whereas the predominance of El Niño Southern Oscillation (ENSO) mode in the tropical Pacific sea surface temperature (SST) variability is well established, no such consensus seems to have been reached by climate scientists regarding the Indian Ocean. While a number of researchers think that the Indian Ocean SST variability is dominated by an active dipolar-type mode of variability, similar to ENSO, others suggest that the variability is mostly passive and behaves like an autocorrelated noise. For example, it is suggested recently that the Indian Ocean SST variability is consistent with the null hypothesis of a homogeneous diffusion process. However, the existence of the basin-wide warming trend represents a deviation from a homogeneous diffusion process, which needs to be considered. An efficient way of detrending, based on differencing, is introduced and applied to the Hadley Centre ice and SST. The filtered SST anomalies over the basin (23.5N-29.5S, 30.5E-119.5E) are then analysed and found to be inconsistent with the null hypothesis on intraseasonal and interannual timescales. The same differencing method is then applied to the smaller tropical Indian Ocean domain. This smaller domain is also inconsistent with the null hypothesis on intraseasonal and interannual timescales. In particular, it is found that the leading mode of variability yields the Indian Ocean dipole, and departs significantly from the null hypothesis only in the autumn season.
Resumo:
Current changes in the tropical hydrological cycle, including water vapour and precipitation, are presented over the period 1979-2008 based on a diverse suite of observational datasets and atmosphere-only climate models. Models capture the observed variability in tropical moisture while reanalyses cannot. Observed variability in precipitation is highly dependent upon the satellite instruments employed and only cursory agreement with model simulations, primarily relating to the interannual variability associated with the El Niño Southern Oscillation. All datasets display a positive relationship between precipitation and surface temperature but with a large spread. The tendency for wet, ascending regions to become wetter at the expense of dry, descending regimes is in general reproduced. Finally, the frequency of extreme precipitation is shown to rise with warming in the observations and for the model ensemble mean but with large spread in the model simulations. The influence of the Earth’s radiative energy balance in relation to changes in the tropical water cycle are discussed
Resumo:
The East Asian Winter Monsoon (EAWM) and Siberian High (SH) are inherently related, based on prior studies of instrumental data available for recent decades (since 1958). Here we develop an extended instrumental EAWM index since 1871 that correlates significantly with the SH. These two indices show common modes of variation on the biennial (2-3 year) time scale. We also develop an index of the pressure gradient between the SH and the Aleutian Low, a gradient which critically impacts EAWM variability. This difference series, based on tree-ring reconstructions of the SH and the North Pacific Index (NPI) over the past 400 years, shows that the weakening of this gradient in recent decades has not been unusual in a long-term context. Correlations between the SH series and a tree-ring reconstruction of the El Nino-Southern Oscillation (ENSO) suggest a variable tropical-higher latitude teleconnection.