887 resultados para Solvent extraction
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Supercritical fluid extraction (SFE) from solids has proven to be technically feasible for almost any system; nonetheless, its economical viability has been proven for a restricted number of systems. A common practice is to compare the cost of manufacturing of vegetable extracts by a variety of techniques without deeply considering the huge differences in composition and functional properties among the various types of extracts obtained; under this circumstance, the cost of manufacturing do not favor SFE. Additionally, the influence of external parameters such as the agronomic conditions and the SFE system geometry are not considered. In the present work, these factors were studied for the system fennel seeds + CO2. The effects of the harvesting season and the degree of maturation on the global yields for the system fennel seeds + CO2 were analyzed at 300 bar and 40 degrees C. The effects of the pressure on the global yields were determined for the temperatures of 30 and 40 degrees C. Kinetics experiments were done for various ratios of bed height to bed diameter. Fennel extracts were also obtained by hydrodistillation and low-pressure solvent extraction. The chemical composition of the fennel extracts were determined by gas chromatography. The SFE maximum global yield (12.5%, dry basis) was obtained with dry harvested fennel seeds. Anethole and fenchone were the major constituents of the extract; the following fat acids palmitic (C16H32O2), palmitoleic stearic (C18H36O2), oleic (C18H34O2), linoleic (C18H32O2) and linolenic (C18H30O2) were also detected in the extracts. A relation between amounts of feed and solvent, bed height and diameter, and solvent flow rate was proposed. The models of Sovova, Goto et al. and Tan and Lion were capable of describing the mass transfer kinetics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rice bran oil was obtained from rice bran by solvent extraction using ethanol. The influence of process variables, solvent hydration (0-24% of water, on mass basis), temperature (60-90 degrees C), solvent-to-rice bran mass ratio (2.5:1 to 4.5:1) and stirrer speed (100-250 rpm) were analysed using the response surface methodology. The extraction yield was highly affected by the solvent water content, and it varied from 8.56 to 20.05 g of oil/100 g of fresh rice bran (or 42.7-99.9% of the total oil available) depending on the experimental conditions. It was observed that oryzanol and tocols behave in different ways during the extraction process. A larger amount of tocols is extracted from the solid matrix in relation to gamma-oryzanol. It was possible to obtain values from 123 to 271 mg of tocols/kg of fresh rice bran and 1527 to 4164 mg of oryzanol/kg of fresh rice bran, indicating that it is feasible to obtain enriched oil when this renewable solvent is used. No differences in the chemical composition of the extracted oils were observed when compared to the data cited in the literature. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear) and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers income.
Resumo:
Purpose: To evaluate the impact of three different extraction methods on yield, physicochemical properties and bioactive ingredients of Raphanus sativus seed oil. Methods: Raphanus Sativus seed oil was prepared by traditional solvent extraction (SE), super-critical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE). The yield, physicochemical properties, fatty acid composition and oxidative stability of the oil extracts were compared. The contents of tocopherol and sulforaphene in the oils were also determined. Results: The oil yield obtained by SPE, SE and SCE were 33.69, 27.17 and 24.10 %, respectively. There were no significant differences in physicochemical properties and fatty acid compositions of oils extracted by the three methods. However, SCE oil had the best oxidative stability, and highest contents of vitamin E and sulforaphene, followed by oils from SPE and SE. Conclusion: SCE is highly selective for tocopherol and sulforaphene, which could explain its high oil oxidative stability. These results suggest that of the three extraction methods, SCE is best suited for preparing medicinal radish seed oil.
Resumo:
The aim of this study was to compare the performance of the following techniques on the isolation of volatiles of importance for the aroma/flavor of fresh cashew apple juice: dynamic headspace analysis using PorapakQ(®) as trap, solvent extraction with and without further concentration of the isolate, and solid-phase microextraction (fiber DVB/CAR/PDMS). A total of 181 compounds were identified, from which 44 were esters, 20 terpenes, 19 alcohols, 17 hydrocarbons, 15 ketones, 14 aldehydes, among others. Sensory evaluation of the gas chromatography effluents revealed esters (n = 24) and terpenes (n = 10) as the most important aroma compounds. The four techniques were efficient in isolating esters, a chemical class of high impact in the cashew aroma/flavor. However, the dynamic headspace methodology produced an isolate in which the analytes were in greater concentration, which facilitates their identification (gas chromatography-mass spectrometry) and sensory evaluation in the chromatographic effluents. Solvent extraction (dichloromethane) without further concentration of the isolate was the most efficient methodology for the isolation of terpenes. Because these two techniques also isolated in greater concentration the volatiles from other chemical classes important to the cashew aroma, such as aldehydes and alcohols, they were considered the most advantageous for the study of cashew aroma/flavor.
Resumo:
Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.
Resumo:
A method using ultrasonication extraction for the determination of 17 polycyclic aromatic hydrocarbons (PAHs), selected by the USEPA and NIOSH as "consent decree" priority pollutants, in soil by High Performance Liquid Chromatography (HPLC) was studied. Separation and detection were completed in 20 min with a C18 columm, acetonitrile-water gradient elution and ultraviolet absorption and fluorescence detections. The detection limits, for a 10 µL of solution injection, were less than 9,917 ng/g in UV detection and less than 1,866 ng/g in fluorescence detection. Several organic solvents were tested for extraction of the 17 PAHs from soils. Acetone was the best solvent among the three solvents tested, and the order of the extraction efficiencies was: acetone>methanol>acetonitrile. Ultrasonication using acetone as solvent extraction was used to evaluate the biodegradation of those compounds in contaminated soil during a vermicomposting process.
Resumo:
Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The production of electronic equipment, such as computers and cell phones, and, consequently, batteries, has increased dramatically. One of the types of batteries whose production and consumption has increased in recent times is the nickel metal hydride (NiMH) battery. This study evaluated a hydrometallurgical method of recovery of rare earths and a simple method to obtain a solution rich in Ni-Co from spent NiMH batteries. The active materials from both electrodes were manually removed from the accumulators and leached. Several acid and basic solutions for the recovery of rare earths were evaluated. Results showed that more than 98 wt.% of the rare earths were recovered as sulfate salts by dissolution with sulfuric acid, followed by selective precipitation at pH 1.2 using sodium hydroxide. The complete process. precipitation at pH 1.2 followed by precipitation at pH 7, removed about 100 wt.% of iron and 70 wt.% of zinc from the leaching solution. Results were similar to those found in studies that used solvent extraction. This method is easy, economic, and does not pose environmental threats of solvent extraction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Specimens of the red alga Bostrychia tenella J Agardh (Rhodomelaceae, Ceramiales) were collected from the Sao Paulo coast and submitted to loom temperature solvent extraction The resulting extract was fractionated by partitioning with organic solvent The n-hexane (BT-H) and dichloromethane (BT-D) fractions showed antiprotozoal potential in biological tests with Trypanosoma cruzi and Leishmania amazonensis and presented high activity in an antifungal assay with the phytopathogenic fungi Cladosporium cladosporioides and Cladosporium sphaerospermum Chromatography methods were used to generate subfractions from BT-H (H01 to H11) and from BT-D (D01 to 019) The subtractions were analyzed by gas chromatography-mass spectrometry (GC/MS). and the substances were identified by retention index (Kovats) and by comparison to databases of commercial mass spectra The volatile compounds found in marine algae were identified as fatty acids, low molecular mass hydrocarbons, esters and steroids, some of these have been previously described in the literature based on other biological activities Moreover, uncommon substances. such as neophytadiene were also identified In a trypanocidal assay, fractions BT-H and BT-D showed IC(50) values of 168 and 19 1 mu g/mL. respectively, and were mote active than the gentian violet standard (31 mu g/ml.); subfractions H02. H03, D01 and D02 were active against L amasonensis, exhibiting IC(50) values of 1 S. 2 7, 4 4. and 4 3 mu g/mL., respectively (standard amphotericin B IC(50) = 13 mu g/mL.) All fractions showed antifungal potential this work reports the biological activity and identification of compounds by GC/MS for the marine red alga B tenella for the first time (C) 2010 Elsevier B V All lights reserved