926 resultados para Solid-state sensors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al(C9H6ON)3.2.5H2O was precipitated from the mixture of an aqueous solution of aluminium ion and an acid solution of 8-hydroxyquinoline, by increasing the pH value to 9.5 with ammonia aqueous solution. The TG curves in nitrogen atmosphere present mass losses due to dehydration, partial volatilisation (sublimation plus vaporisation) of the anhydrous compound followed by thermal decomposition with the formation of a mixture of carbonaceous and residues. The relation between sublimation and vaporisation depends on the heating rate used. The non isothermic integral isoconventional methods as linear equations of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS) were used to obtain the kinetic parameters from TG and DTA curves, respectively. Despite the fact that both dehydration and volatilisation reactions follow the linearity by using both methods, only for the volatilisation reaction the validity condition, 20<= E/RT<= 50, was verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state cinnamylidenepyruvate of trivalent lanthanides (except for promethium) and yttrium, were prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal behavior of these compounds in a dynamic CO2 atmosphere. The results obtained showed significative differences on the thermal stability and thermal decomposition of these compounds, with regard to the thermal behavior study in a dynamic air atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocinnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalitycal techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state compounds M-2-Cl-BP, where 2-Cl-BP is 2-chlorobenzylidenepyruvate and M represents Al, Ga, In, and Sc were prepared. X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of the compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of sodium 2-chlorobenzylidenepyruvate and its corresponding acid as well as binary, binary together with it's acid or hydroxo-2-chorobenzylidenepyruvate of aluminium (III), gallium (III) and indium (III), were isolated. Chemical analysis, thermogravimetry, derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and X-ray powder diffractometry have been employed to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state M-L compounds, where M stands for bivalent Mn, Ni, Cu and L is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry - differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state compounds of 4-methylbenzylidenepyruvate with Al(III), Ga(III), In(III) and Sc(III) have been synthesized. Complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state M-2-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 2-MeO-Bz is 2-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), thermogravimetry, derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state Ln -3-MeO-Bz compounds, where Ln stands for lighter trivalent lanthanides (La Sm) and 3-methoxybenzoate, have been synthesized. Thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information concerning the composition, dehydration, polymorphic transformation, thermal behaviour and thermal decomposition of the synthesized compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Divalent metal complexes of ligand 2-methoxybenzylidenepyruvate with Fe, Co, Ni, Cu and Zn as well as sodium salt were synthesized and investigated in the solid state. TG curves of these compounds were obtained with masses sample of 1 and 5mg under nitrogen atmosphere. Different heating rates were used to characterize and study these compounds from the kinetic point of view. The activation energy and pre-exponential factor were obtained applying the Wall-Flynn-Ozawa method to the TG curves. The obtained data were evaluated and the values of activation energy (Ea / kJ mol-1) was plotted in function of the conversion degree (α). The results show that due to mass sample, different activation energies were obtained. The results are discussed mainly taking into account the linear dependence between the activation energy and the pre exponential factor, where was verified the effect of kinetic compensation (KCE) and possible linear relations between the dehydrations steps of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen cutting is a thermal cutting process, in which metal is heated locally up to its ignition temperature and burnt off by oxygen blast. Oxygen cutting can be used to remove upset metal of a hollow bar occurred due to solid-state welding process. The main goal of this research was to establish a connection between oxygen blasts and mass of metal removed and relate findings to production to suggest improvements to the current process. This master´s thesis describes the designing and building of a test rig for oxygen blowing measurements. It also contains all executed tests and test results, which were carried out. There are different cutting parameters which were studied as well as their effect on cutting process. The oxygen cutting process, used in solid-state welding process, can be improved by the test results.