860 resultados para Solar tracker. Solar energy. Position control. Structures
Resumo:
The purpose of my tour to Czechoslovakia was to participate the Third International Conference Applied Optics in Solar Energy, which was held in Prague, Octoher 2-6, 1989, and then visit some scientific institutes and solar collector plants as guest of the Czechoslovakian Academy of Science. This was made possihle hy an exchange researcher grant from the Royal Swedish Academy of Engineering Sciences.
Resumo:
På uppdrag av STEM bevakade Eva Lindberg från Centrum för solenergi-forskning, SERC, Högskolan Dalarna, 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, 6-10 juni 2005. Ca 1700 personer fanns på deltagarlistan. På grund av konferensen omfattning kan endast ett litet urval av föredrag och utställare kommenteras i rapporten. Konferensprogrammet var indelat på följande områden:1. Grundläggande fakta, nya komponenter och material2. Kristallina kiselsolceller and materialteknologi3. Amorft och mikrokristallint kisel4. CIS, CdTe och andra (II-VI) ternära tunnfilmsceller5. PV-moduler och komponenter i PV-system6. PV-system i nätanslutna applikationer7. Globala aspekter på PV-solelektricitet8. PV-industrins resultatFoU om kristallina solceller dominerade stort, sedan tunnfilmsceller av främst amorft kisel. Intressant var att återvinning är föremål för FoU; dels återvinning av kiselsolceller när panelen tjänat ut; dels återvinning av Cu, Cd, Se och Te när tunnfilmscellerna tas ur bruk.237 företag fanns representerade i utställningen, varav 20 från Kina. Tyskland dominerade stort. Utställningen teman var följande: 1) Tillverkare av kiselplattor, solceller, PV-moduler, koncentratorer, solföljare (se bild nedan) 2) Tillverkare och återförsäljare av utrustning och material 3) Integrering och distribution av system 4) Mätningar och kontrollteknologi 5) Forskning och laboratorier 6) Service, teknik, konsulting 7) Myndigheter och föreningar 8) Media och förlag 9) Tillverkare av inverterare 10) Övrigt.
Resumo:
This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.
Resumo:
In order to estimate the deforestation consequences on the actual solar energy budget of the Central Amazon Region, two ecosystems of different characteristics were compared. The present conditions of the region were represented by a typical 'terra firme' forest cover located at INPA's Ducke Forest Reserve, where the measurements necessary to evaluate its solar energy balance were carried out. The second ecosystem, simulating a deforested area, was represented by an area about 1.0 ha without natural vegetation and situated in the same Reserve. In this area lysimeters were placed, two of them filled with yellow latosol and two others with quartzose sand soil. Both soils are representative soils in the region. Their water balances were taken into account as well as the other parameters necessary to compute the solar energy balances. The results showed that water loss by evaporation was about 41.8% of the total precipitation in the yellow latosol lysimeters and about 26.4% for the quartzose sand ones. For the forest cover it was estimated an evapotranspiration of 67.9% of the rainfall amount. In relation to solar energy balance calculated for the forest cover, it was found that 83.1% of the total energy incoming to this ecosystem was used by the evapotranspiration process, while the remaining of 16.9% can be taken as sensible heat. For bare soils, 55.1% and 31.8% of the total energy were used as latent heat by yellow latosol and quartzose sand soils, respectively. So, the remaining amounts of 44.9% and 68.2% were related to sensible heat and available to atmospheric air heating of these ecosystems. Such results suggest that a large deforestation of the Amazon Region would have direct consequences on their water and solar radiation balances, with an expected change on the actual climatic conditions of the region. © 1993.
Resumo:
The growing demand for electrical power and the limited capital invested to provide this power is forcing countries like Brazil to search for new alternatives for electrical power generation. The purpose of this paper is to present a technical and economic study on a 15 kW solar plant installed in an isolated community, highlighting the importance of the need for financial subsidy from the government. It evaluates the importance of parameters such as the annual interest rate, specific investment, the marginal cost of expanding the electrical power supply and the government subsidy on amortization time of capital invested. © 2012 Elsevier Ltd All rights reserved.
Resumo:
Solar research is primarily conducted in regions with consistent sunlight, severely limiting research opportunities in many areas. Unfortunately, the unreliable weather in Lewisburg, PA, can prove difficult for such testing to be conducted. As such, a solar simulator was developed for educational purposes for the Mechanical Engineering department at Bucknell University. The objective of this work was to first develop a geometric model to evaluate a one sun solar simulator. This was intended to provide a simplified model that could be used without the necessity of expensive software. This model was originally intended to be validated experimentally, but instead was done using a proven ray tracing program, TracePro. Analyses with the geometrical model and TracePro demonstrated the influence the geometrical properties had results, specifically the reflector (aperture) diameter and the rim angle. Subsequently, the two were approaches were consistent with one another for aperture diameters 0.5 m and larger, and for rim angles larger than 45°. The constructed prototype, that is currently untested, was designed from information provided by the geometric model, includes a metal halide lamp with a 9.5 mm arc diameter and parabolic reflector with an aperture diameter of 0.631 meters. The maximum angular divergence from the geometrical model was predicted to be 30 mRadians. The average angular divergence in TraceProof the system was 19.5 mRadians, compared to the sun’s divergence of 9.2 mRadians. Flux mapping in TracePro showed an intensity of 1000 W/m2 over the target plane located 40 meters from the lamp. The error between spectrum of the metal halide lamp and the solar spectrum was 10.9%, which was found by comparing their respective Plank radiation distributions. The project did not satisfy the original goal of matching the angular divergence of sunlight, although the system could still to be used for optical testing. The geometric model indicated performance in this area could be improved by increasing the diameter of the reflector, as well as decreasing the source diameter. Although ray tracing software provides more information to analyze the simulator system, the geometrical model is adequate to provide enough information to design a system.