998 resultados para Solar flare
Resumo:
X-ray spectra of the late-type star AB Dor obtained with the XMM-Newton satellite are analyzed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyze flare and quiescent spectra, with emphasis on the Fe XVII 15 - 17 angstrom wavelength region. The Fe XVII 16.78 angstrom/ 15.01 angstrom line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 angstrom line photons from the line of sight. The escape probability technique indicates an optical depth of approximate to 0.4 for the 15.01 angstrom line. During the flare, the electron density is 4.4(-1.6)(+2.7) x 10(10) cm(-3), and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value Using these parameters, a path length of approximate to 8000 km is derived. There is no evidence of opacity in the quiescent X-ray spectrum of the star.
Resumo:
Aims. We use high spatial and temporal resolution observations from the Swedish Solar Telescope to study the chromospheric velocities of a C-class flare originating from active region NOAA 10969.
Methods. A time-distance analysis is employed to estimate directional velocity components in Hα and Ca ii K image sequences. Also, imaging spectroscopy has allowed us to determine flare-induced line-of-sight velocities. A wavelet analysis is used to analyse the periodic nature of associated flare bursts.
Results. Time-distance analysis reveals velocities as high as 64 km s-1 along the flare ribbon and 15 km s-1 perpendicular to it. The velocities are very similar in both the Hα and Ca ii K time series. Line-of-sight Hα velocities are red-shifted with values up to 17 km s-1. The high spatial and temporal resolution of the observations have allowed us to detect velocities significantly higher than those found in earlier studies. Flare bursts with a periodicity of ≈60 s are also detected. These bursts are similar to the quasi-periodic oscillations observed at hard X-ray and radio wavelength data.
Conclusions. Some of the highest velocities detected in the solar atmosphere are presented. Line-of-sight velocity maps show considerable mixing of both the magnitude and direction of velocities along the flare path. A change in direction of the velocities at the flare kernel has also been detected which may be a signature of chromospheric evaporation.
Resumo:
The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.
Resumo:
The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.
Resumo:
We develop a database of 110 gradual solar energetic particle (SEP) events, over the period 1967–2006, providing estimates of event onset, duration, fluence, and peak flux for protons of energy E > 60 MeV. The database is established mainly from the energetic proton flux data distributed in the OMNI 2 data set; however, we also utilize the McMurdo neutron monitor and the energetic proton flux from GOES missions. To aid the development of the gradual SEP database, we establish a method with which the homogeneity of the energetic proton flux record is improved. A comparison between other SEP databases and the database developed here is presented which discusses the different algorithms used to define an event. Furthermore, we investigate the variation of gradual SEP occurrence and fluence with solar cycle phase, sunspot number (SSN), and interplanetary magnetic field intensity (Bmag) over solar cycles 20–23. We find that the occurrence and fluence of SEP events vary with the solar cycle phase. Correspondingly, we find a positive correlation between SEP occurrence and solar activity as determined by SSN and Bmag, while the mean fluence in individual events decreases with the same measures of solar activity. Therefore, although the number of events decreases when solar activity is low, the events that do occur at such times have higher fluence. Thus, large events such as the “Carrington flare” may be more likely at lower levels of solar activity. These results are discussed in the context of other similar investigations.
Resumo:
Increase in the Balmer continuum radiation during solar flares was predicted by various authors, but has never been firmly confirmed observationally using ground-based slit spectrographs. Here we describe a new post-focal instrument, the image selector, with which the Balmer continuum flux can be measured from the whole flare area, in analogy to successful detections of flaring dMe stars. The system was developed and put into operation at the horizontal solar telescope HSFA2 of the Ondřejov Observatory. We measure the total flux by a fast spectrometer from a limited but well-defined region on the solar disk. Using a system of diaphragms, the disturbing contribution of a bright solar disk can be eliminated as much as possible. Light curves of the measured flux in the spectral range 350 – 440 nm are processed, together with the Hα images of the flaring area delimited by the appropriate diaphragm. The spectral flux data are flat-fielded, calibrated, and processed to be compared with model predictions. Our analysis of the data proves that the described device is sufficiently sensitive to detect variations in the Balmer continuum during solar flares. Assuming that the Balmer-continuum kernels have at least a similar size as those visible in Hα, we find the flux increase in the Balmer continuum to reach 230 – 550 % of the quiet continuum during the observed X-class flare. We also found temporal changes in the Balmer continuum flux starting well before the onset of the flare in Hα.
Resumo:
The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the \ion{Fe}{xxi} 187~\AA, \ion{Fe}{xxii} 253~\AA, \ion{Fe}{xxiii} 263~\AA\ and \ion{Fe}{xxiv} 255~\AA\ emission lines were simultaneously observed by the EUV Imaging Spectrometer onboard the Hinode satellite. Intensity ratios among these high temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies at the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the \ion{Fe}{xxii}/\ion{Fe}{xxiv} intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multi-thermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10MK.