986 resultados para Solar Activity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed VSW, the interplanetary magnetic field strength B, and the open solar flux FS. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using VSW, FS, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop a database of 110 gradual solar energetic particle (SEP) events, over the period 1967–2006, providing estimates of event onset, duration, fluence, and peak flux for protons of energy E > 60 MeV. The database is established mainly from the energetic proton flux data distributed in the OMNI 2 data set; however, we also utilize the McMurdo neutron monitor and the energetic proton flux from GOES missions. To aid the development of the gradual SEP database, we establish a method with which the homogeneity of the energetic proton flux record is improved. A comparison between other SEP databases and the database developed here is presented which discusses the different algorithms used to define an event. Furthermore, we investigate the variation of gradual SEP occurrence and fluence with solar cycle phase, sunspot number (SSN), and interplanetary magnetic field intensity (Bmag) over solar cycles 20–23. We find that the occurrence and fluence of SEP events vary with the solar cycle phase. Correspondingly, we find a positive correlation between SEP occurrence and solar activity as determined by SSN and Bmag, while the mean fluence in individual events decreases with the same measures of solar activity. Therefore, although the number of events decreases when solar activity is low, the events that do occur at such times have higher fluence. Thus, large events such as the “Carrington flare” may be more likely at lower levels of solar activity. These results are discussed in the context of other similar investigations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent research has suggested that relatively cold UK winters are more common when solar activity is low (Lockwood et al 2010 Environ. Res. Lett. 5 024001). Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century (Lockwood 2010 Proc. R. Soc. A 466 303–29) and records of past solar variations inferred from cosmogenic isotopes (Abreu et al 2008 Geophys. Res. Lett. 35 L20109) and geomagnetic activity data (Lockwood et al 2009 Astrophys. J. 700 937–44) suggest that the current grand solar maximum is coming to an end and hence that solar activity can be expected to continue to decline. Combining cosmogenic isotope data with the long record of temperatures measured in central England, we estimate how solar change could influence the probability in the future of further UK winters that are cold, relative to the hemispheric mean temperature, if all other factors remain constant. Global warming is taken into account only through the detrending using mean hemispheric temperatures. We show that some predictive skill may be obtained by including the solar effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

March 2012 brought the first solar and geomagnetic disturbances of any note during solar cycle 24. But perhaps what was most remarkable about these events was how unremarkable they were compared to others during the space-age, attracting attention only because solar activity had been so quiet. This follows an exceptionally low and long-lived solar cycle minimum, and so the current cycle looks likely to extend a long-term decline in solar activity that started around 1985 and that could even lead to conditions similar to the Maunder minimum within 40 years from now, with implications for solar-terrestrial science and the mitigation of space weather hazards and maybe even for climate in certain regions and seasons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The literature relevant to how solar variability influences climate is vast—but much has been based on inadequate statistics and non-robust procedures. The common pitfalls are outlined in this review. The best estimates of the solar influence on the global mean air surface temperature show relatively small effects, compared with the response to anthropogenic changes (and broadly in line with their respective radiative forcings). However, the situation is more interesting when one looks at regional and season variations around the global means. In particular, recent research indicates that winters in Eurasia may have some dependence on the Sun, with more cold winters occurring when the solar activity is low. Advances in modelling ‘‘top-down’’ mechanisms, whereby stratospheric changes influence the underlying troposphere, offer promising explanations of the observed phenomena. In contrast, the suggested modulation of low-altitude clouds by galactic cosmic rays provides an increasingly inadequate explanation of observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Galactic cosmic ray flux at Earth is modulated by the heliospheric magnetic field. Heliospheric modulation potential, Φ, during grand solar minima is investigated using an open solar flux (OSF) model with OSF source based on sunspot number, R, and OSF loss on heliospheric current sheet inclination. Changing dominance between source and loss means Φ varies in- (anti-) phase with R during strong (weak) cycles, in agreement with Φ estimates from ice core records of 10Be concentration, which are in-phase during most of the last 300 years, but anti-phase during the Maunder Minimum. Model results suggest “flat” OSF cycles, such as solar cycle 20 result from OSF source and loss terms temporarily balancing throughout the cycle. Thus even if solar activity continues to decline steadily, the long-term drop in OSF through SC21 to SC23 may plateau during SC24, though reemerge in SC25 with the inverted phase relation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fair weather atmospheric electrical current (Jz) couples the ionosphere to the lower atmosphere and thus provides a route by which changes in solar activity can modify processes in the lower troposphere. This paper examines the temporal variations and spectral characteristics of continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35′ N, 34°45′ E), during two large CMEs, and during periods of increased solar wind density. Evidence is presented for the effects of geomagnetic storms and sub-storms on low latitude Jz during two coronal mass ejections (CMEs), on 24–25th October 2011 and 7–8th March 2012, when the variability in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased Jz fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the October 2011 event, the periods of increased fluctuations in Jz lasted for 7 h and coincided with fluctuations of the inter-planetary magnetic field (IMF) detected by the ACE satellite. We suggest downward mapping of ionospheric electric fields as a possible mechanism for the increased fluctuations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been suggested that the Sun may evolve into a period of lower activity over the 21st century. This study examines the potential climate impacts of the onset of an extreme ‘Maunder Minimum like’ grand solar minimum using a comprehensive global climate model. Over the second half of the 21st century, the scenario assumes a decrease in total solar irradiance of 0.12% compared to a reference RCP8.5 experiment. The decrease in solar irradiance cools the stratopause (~1 hPa) in the annual and global mean by 1.4 K. The impact on global mean near-surface temperature is small (~−0.1 K), but larger changes in regional climate occur during the stratospheric dynamically active seasons. In Northern hemisphere (NH) winter-time, there is a weakening of the stratospheric westerly jet by up to ~3-4 m s1, with the largest changes occurring in January-February. This is accompanied by a deepening of the Aleutian low at the surface and an increase in blocking over northern Europe and the north Pacific. There is also an equatorward shift in the Southern hemisphere (SH) midlatitude eddy-driven jet in austral spring. The occurrence of an amplified regional response during winter and spring suggests a contribution from a top-down pathway for solar-climate coupling; this is tested using an experiment in which ultraviolet (200–320 nm) radiation is decreased in isolation of other changes. The results show that a large decline in solar activity over the 21st century could have important impacts on the stratosphere and regional surface climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the relative positioning, even considering that part of the errors due to ionosphere is canceled with the double-difference observations, strong ionospheric effects can occur in maximum solar activity period. However, in minimum solar activity period, the ionospheric effects decrease significantly and therefore an improvement of the relative positioning performance takes place. In this paper we aim at showing that improvement for the scientific and GPS community users. So, have been experiments by using GPS data of two stations of the Brazilian Network for Continuous Monitoring of GPS, forming a baseline of 430 km. The processing were use accomplished with interval of two hours, and only L1 carrier data have been used. The analysis of the obtained results has been carried out from the discrepancies between the "true" coordinates and corresponding ones obtained in the processing. In maximum solar activity period the discrepancy value reached 25 m. on the other hand, in minimum solar activity period, the discrepancy value reached 5,5 m. It is important to emphasize that the majority of the discrepancy values didn't exceed 0,50 m, and in some cases only reached 0,10 m. This shows the increase of application possibilities of the relative positioning using single-frequency GPS receivers in minimum solar activity period.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ionosphere is a major source of systematic error in the GPS observables. As this error is directly proportional to the TEC (Total Electron Content), the quality of GPS positioning (especially with single frequency receivers) can be significantly affected by regular changes of TEC. The ionosphere factor is even more relevant in the Brazilian region, where ionospheric phenomena, such as the Equatorial Anomaly, intensify these variations. Taking the above mentioned factors into account, experiments were conducted in this research to evaluate the daily and seasonal behavior of the TEC and the point positioning with GPS (single frequency) in periods of high and low solar activity in the Brazilian region. The results showed a direct correlation between the decrease in electrons density in the ionosphere (period of low solar activity) and improvement in positioning accuracy, as well as a large influence of Equatorial Anomaly on the results of point positioning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cada vez mais é crescente o uso do GPS (Global Positioning System ) em estudos da atmosfera terrestre. Neste artigo, a atmosfera superior da Terra, denominada ionosfera, foi estudada durante um período de alta atividade solar (ano de 2001) usando dados de receptores GPS de dupla freqüência localizados na região brasileira, pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). A partir dos dados GPS foram calculados os valores de TEC (Total Electron Content - Conteúdo Total de Elétrons) da ionosfera. Adicionalmente foram incluídos no estudo dados de freqüência crítica da camada F2 advinda de Digissondas localizadas em São Luís/MA (3ºS; 44ºW) e Cachoeira Paulista/SP (22ºS; 45ºW), para fins de comparação. de uma forma geral, os resultados mostraram maiores valores de TEC durante os meses próximos aos equinócios e menores durante os meses de inverno. Quanto à variação diária do TEC, os menores valores foram verificados por volta das 4-6 HL (Hora Local) e os maiores durante o período da tarde, com valores um pouco maiores para São Luís. O segundo pico da anomalia equatorial foi verificado em Cachoeira Paulista nos meses próximos aos equinócios e verão. Na maioria dos meses, uma alta correlação linear foi verificada quando realizada a comparação entre os valores de freqüência crítica da camada F2 e os de TEC, principalmente para São Luís.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS has reached unprecedented proportions. The perturbations of the ionosphere caused by increased solar activity pose a major threat to these applications. This is particularly true in equatorial regions where high exposure to solar-induced disturbances is coupled with explosive growth of precise GNSS applications. Along with the various types of solar-induced ionospheric disturbances, strong scintillations are amongst the most challenging, causing phase measurement errors up to full losses of lock for several satellites. Brazil, which heavily relies on high-precision GNSS, is one of the most affected regions due notably to the proximity to the southern crest of the ionospheric equatorial anomaly and to the South Atlantic Magnetic Anomaly. In the framework of the CIGALA project, we developed the PolaRxS™, a GNSS receiver dedicated to the monitoring of ionospheric scintillation indices not only in the GPS L1 band but for all operational and upcoming constellations and frequency bands. A network of these receivers was deployed across the whole Brazilian territory in order to first investigate and secondly to mitigate the impact of scintillation on the different signals, ensuring high precision GNSS availability and integrity in the area. This paper reports on the validation of the PolaRxS™ receiver as an ionospheric scintillation monitor and the first results of the analysis of the data collected with the CIGALA network.