966 resultados para Sol-gel method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgAl(2)O(4):Eu, Dy nanoparticles were prepared by citrate sol-gel method and thermally treated at 600, 700, 800 and 900 degrees C. The trivalent europium ion is partially reduced to the divalent state at 700 and 800 degrees C. Infrared spectra of the phosphors showed bands around 700 and 520 cm(-1) corresponding to the AlO(6) groups. X-ray diffraction patterns present sharp reflections of samples heated from 700 to 900 degrees C indicating the MgAl(2)O(4) spinel phase. Grain size in the range 20-30 nm were observed by measurement of transmission electron microscopy (TEM). The emission spectra of the phosphors show a broadened band at 480 nm assigned to the 4f(G)5d -> 4f(7) ((8)S(7/2)) transition of Eu(2+) ion overlapped to the (4)F(9/2) -> (6)H(15/2) transition of the Dy(3+) ion. Besides, the (4)F(9/2) -> (6)H(13/2) transition (579 nm) of Dy(3+) ion is overlapped with the (5)D(0) -> (7)F(0) (578 nm) and (5)D(0) -> (7)F(1) (595 nm) transitions from the Eu(3+) ion. Excitation spectra of the sample heated at 900 degrees C monitoring the excitation at 615 nm of (5)D(0) -> (7)F(2) transition of Eu(3+) ion exhibit a broad band assigned to the O -> Eu(3+) ligand-to-metal charge-transfer states (LMCT) around 280 nm. The samples present green persistent luminescence after exposure to UV radiation. The chromaticity coordinates were obtained from the luminescence emission spectrum. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of efficient anti-corrosion and environmentally friendly coating systems are needed for the replacement of the highly toxic Cr-based conversion coatings for corrosion protection of aluminum alloys. In this study, we demonstrate that the direct application of ceramic cerium-based sol-gel coatings to AA7075-T6 substrates produces high-performance anti-corrosion layers. Electrochemical experiments and analyses of the microstructure demonstrate that the protective layers are very efficient for the passivation of the alloy surfaces operating as both passive and active barrier for corrosion protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to synthesize conducting oxide nanoparticles with low photocatalytic activity was investigated. Initially, the preparation of amorphous ZnO-SnO2 solid solution nanoparticles was studied using a sol-gel technique. It was found that X-ray amorphous nanopowders with low photocatalytic activity were produced when the precipitates were heat treated below 500 °C. However, FT-IR data showed that the sample may not be an oxide semiconductor. A mixture of ZnO and SnO2 crystalline nanoparticles was also produced at 800 °C and found to have much reduced photoactivity than commercial ZnO nanoparticles having a similar specific surface area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol-gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600 degrees C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5-42.5 nm while the thickness of SiO2 shell attained 1.5-3.5 nm approximately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work particles of ZnO of size range 33-56 Angstrom were prepared by a sol-gel method. The effect of reaction time on the particle size of ZnO or ZnO:Ce was investigated by transmission electron microscopy measurements, UV-vis absorption and luminescence spectroscopy. A linear increase of the mean particle size is observed as a function of reaction time. The cerium-doped particles are bigger than the pure ZnO ones obtained at the same reaction time. A shift to lower energy at the maximum of the bands is observed in all absorption, emission and excitation spectra as a function of particle growth. From the absorption spectra the optical energy gap values (Eg) for these particles were determined. In the quantum size regime, Eg was found to decrease with particle growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.