992 resultados para Soil-block test
Soil management systems for sustainable melon cropping in the Submedian of the São Francisco Valley.
Resumo:
Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis): 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha(-1), annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.
Resumo:
Collapsible soils are usually nonsaturated, low density, and metastable-structured soils that are known to exhibit a volume reduction following an episode of moisture increase or suction reduction. This paper describes the collapsible behavior of clayey sand based on controlled soil suction tests carried out on undisturbed samples from the city of Pereira Barreto, in the State of Sao Paulo, Brazil. Foundation settlements due to soil collapse are common in this region and occurred during the filling of the reservoir of the Tres Irmaos Dam, which induced the elevation of the groundwater table in different parts of Pereira Barreto. This paper shows that collapse strains depend on the stress and soil suction acting in the sample and that saturation is not necessary for a collapse to occur. The influence of soil suction, gradual wetting, and the wetting and drying cycle on the collapsible behavior of the soil is also shown and discussed.
Resumo:
The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult`s law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective was to develop and test a procedure for applying variable rates of fertilizers and evaluate yield response in coffee (Coffea arabica L.) with regard to the application of phosphorus and potassium. The work was conducted during the 2004 season in a 6.4 ha field located in central Sao Paulo state. Two treatments were applied with alternating strips of fixed and variable rates during the whole season: one following the fertilizing procedures recommended locally, and the other based on a grid soil sampling. A prototype pneumatic fertilizer applicator was used, carrying two conveyor belts, one for each row. Harvesting was done with a commercial harvester equipped with a customized volumetric yield monitor, separating the two treatments. Data were analyzed based on geostatistics, correlations and regressions. The procedure showed to be feasible and effective. The area that received fertilizer applications at a variable rate showed a 34% yield increase compared to the area that received a fixed rate. The variable rate fertilizer resulted in a savings of 23% in phosphate fertilizer and a 13% increase in potassium fertilizer, when compared to fixed rate fertilizer. Yield in 2005, the year after the variable rate treatments, still presented residual effect from treatments carried out during the previous cycle.
Resumo:
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.
Resumo:
Bulk density of undisturbed soil samples can be measured using computed tomography (CT) techniques with a spatial resolution of about 1 mm. However, this technique may not be readily accessible. On the other hand, x-ray radiographs have only been considered as qualitative images to describe morphological features. A calibration procedure was set up to generate two-dimensional, high-resolution bulk density images from x-ray radiographs made with a conventional x-ray diffraction apparatus. Test bricks were made to assess the accuracy of the method. Slices of impregnated soil samples were made using hardsetting seedbeds that had been gamma scanned at 5-mm depth increments in a previous study. The calibration procedure involved three stages: (i) calibration of the image grey levels in terms of glass thickness using a staircase made from glass cover slips, (ii) measurement of ratio between the soil and resin mass attenuation coefficients and the glass mass attenuation coefficient, using compacted bricks of known thickness and bulk density, and (iii) image correction accounting for the heterogeneity of the irradiation field. The procedure was simple, rapid, and the equipment was easily accessible. The accuracy of the bulk density determination was good (mean relative error 0.015), The bulk density images showed a good spatial resolution, so that many structural details could be observed. The depth functions were consistent with both the global shrinkage and the gamma probe data previously obtained. The suggested method would be easily applied to the new fuzzy set approach of soil structure, which requires generation of bulk density images. Also, it would be an invaluable tool for studies requiring high-resolution bulk density measurement, such as studies on soil surface crusts.
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose: The Gow-Gates technique is said to have several advantages over traditional techniques to achieve mandibular nerve anesthesia; however, its routine use is quite limited, mainly due to complications during visual alignment of reference landmarks. The purpose of this study was to verify the validity and accuracy of a new method to reach the injection site. Material and Methods: Fifteen magnetic resonance images were captured. Distances from the ideal injection point in the condylar neck (puncture ideal) to the injection points located in the a and 0 plane intersection (Puncture Gow-Gates and puncture modified) were measured and compared. Results: Positive and significant (P <= .003) Pearson correlations between landmarks and injection points confirmed the validity of the modified technique. Paired t test showed that the segment line puncture ideal-puncture modified, 5.17 mm, was 3 times shorter (P < .001) than the segment line puncture ideal-puncture Gow-Gates, 17.91 mm. As calculated by linear regression, establishing the injection point of the modified technique depended only on the anteroposterior and lateromedial condyle positions. Conclusions: The modified technique proved to be valid and precise and has a determined and an effective injection site. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:2609-2616, 2009
Resumo:
To histomorphometrically investigate the repair of critical size defects (CSDs) and bone augmentation in cranial walls using block of sintered bovine-derived anorganic bone (sBDAB) graft. Forty guinea-pigs were divided into test (n=20) and CSD control (n=20) groups. In each animal, a full-thickness bone defect with 9.5 mm diameter was made in the frontal bone. The defects were filled with an sBDAB block soaked in blood in the test group and with blood clot in the CSD control group. The skulls were collected at 0 h (n=2) and 30, 90 and 180 days (n=6/group and period) postoperatively. The volume density and total volume of newly formed bone, sBDAB, blood vessels and connective tissue, vertical thickness of removed bone plug, sBDAB block and graft area were evaluated. The vertical thickness of the adapted sBDAB block was 3.8 times higher than that of the removed bone plug and did not show significant difference between periods, filling in average 29.8% of the total graft region. The sBDAB block exhibited complete osseointegration with the borders of the defect at 90 days. At 90 and 180 days, the vertical thickness of the graft was 279% in the average, and the total volume of bone augmentation was, respectively, 78.8% and 148.5% higher compared with the removed bone plug. The defects of the CDS control group showed limited osteogenesis and filling by connective tissue plus tegument. The sBDAB block can be used to promote repair of CSDs and bone augmentation in the craniomaxillofacial region, due to its good osteoconductive and slow resorptive properties. To cite this article:Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model.Clin. Oral Impl. Res. 20, 2009; 340-350.doi: 10.1111/j.1600-0501.2008.01659.x.
Resumo:
We tested the hypothesis that tree species in a subtropical rain forest in south-east Queensland are ecologically equivalent and therefore have identical environmental requirements for their regeneration. We assessed the evidence that juveniles of species differed in their distributions in treefall gap microsites and along gradients of light availability, soil pH, soil PO4-P availability and soil NO3-N availability. Pairwise comparisons were made on a subset of the common species selected on the basis that they showed a relatively high level of positive association, and would therefore, a priori, be expected to have similar regeneration requirements. Detailed comparisons between the species failed to demonstrate evidence for species differentiation with respect to their tolerance of the disturbance associated with gap microsites or to the gradient of NO3-N availability. However, species differed markedly in their distributions along the soil pH gradient and along the gradients of light availability and soil PO4-P availability. The overall level of ecological differentiation between the species is high: seven out of the 10 possible species pairings showed evidence for ecological differentiation. Such niche differentiation amongst the juveniles of tree species may play an important role in maintaining the species richness of rain-forest communities.
Resumo:
This article develops a weighted least squares version of Levene's test of homogeneity of variance for a general design, available both for univariate and multivariate situations. When the design is balanced, the univariate and two common multivariate test statistics turn out to be proportional to the corresponding ordinary least squares test statistics obtained from an analysis of variance of the absolute values of the standardized mean-based residuals from the original analysis of the data. The constant of proportionality is simply a design-dependent multiplier (which does not necessarily tend to unity). Explicit results are presented for randomized block and Latin square designs and are illustrated for factorial treatment designs and split-plot experiments. The distribution of the univariate test statistic is close to a standard F-distribution, although it can be slightly underdispersed. For a complex design, the test assesses homogeneity of variance across blocks, treatments, or treatment factors and offers an objective interpretation of residual plot.
Resumo:
O manejo do solo deve ser realizado de tal forma que garanta a produção sustentável ao longo dos anos. Dentre as técnicas empregas, o manejo agroecológico e o plantio direto favorecem a manutenção da cobertura do solo e o aporte de matéria orgânica. Partindo da hipótese de que o maior aporte de resíduos culturais aumenta o conteúdo e estoque de matéria orgânica no solo, bem como reduz a emissão de C-CO2, o objetivo geral da pesquisa foi avaliar o impacto do manejo na matéria orgânica do solo e na emissão de C-CO2, nos períodos secos e chuvosos em diferentes cultivos agrícolas. O capítulo 1 foi desenvolvido na comunidade de Feliz Lembrança, Alegre–ES, onde foram avaliados sistemas de manejo em pastagem (PAST), café a pleno sol (PS) e café em sistema agroflorestal (SAF) e uma mata nativa (MN). O capítulo 2 foi desenvolvido no Incaper de Domingos Martins, onde se avaliou tratamentos de plantio direto de hortaliças sob palhada de gramínea (PD-G), leguminosa (PD-L), consórcio gramínea/leguminosa (PD-GL) e convencional utilizando enxada rotativa no pré-plantio (PC)em um delineamento de blocos casualizados. Amostras de solos em diferentes camadas foram coletadas para caracterização química e da matéria orgânica. Foram realizadas medições de emissão de C-CO2, temperatura do solo, umidade do solo e C biomassa microbiana do solo in situ. Foi utilizada análise de variância multivariada, vinculada a teste de aleatorização e aplicação de contrastes ortogonais no capítulo 1 e análise de variância aplicando teste F e teste de médias no capítulo 2. O SAF apresentou maior conteúdo de C orgânico total (19,8 g/kg) na camada de 0 a 5 cm e a PAST em subsuperfície. O menor estoque de C e N e os maiores valores de quociente metabólico foram encontrados no PS. O SAF reduziu a emissão de C-CO2 em 1,93 Mg ha-1 ano-1 em relação ao PS. O C orgânico total variou de 34,94 a 50,48 g/kg no PD-GL enquanto no sistema PC essa variação foi de 27,11 a 43,74 g/kg no perfil amostrado. A emissão média anual foi de 15,89 Mg C-CO2 ha-1 ano-1para a PD-G enquanto o PD-GL foi de 13,77; PD-L de 13,09 e PC de 11,20 Mg C-CO2 ha-1 ano-1. No PC, o balanço de C foi negativo (-2,15Mg ha-1), além de apresentar as menores médias anuais de umidade do solo e C biomassa microbiana e maior Qmet anual. Sistemas com contínuo e diversificado aporte de matéria orgânica promovem redução na emissão de C-CO2, bem como atuam no sequestro de C atmosférico.