994 resultados para Soil restoration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Re-establishing nutrient-cycling is often a key goal of mine-site restoration. This goal can be achieved by applying fertilisers (particularly P) in combination with seeding N-fixing legumes. However, the effect of this strategy on other key restoration goals such as the establishment and growth of non-leguminous species has received little attention. We investigated the effects of P-application rates either singly, or in combination with seeding seven large understorey legume species, on jarrah forest restoration after bauxite mining. Five years after P application and seeding, legume species richness, density and cover were higher in the legume-seeded treatment. However, the increased establishment of legumes did not lead to increased soil N. Increasing P-application rates from 0 to 80 kg P ha−1 did not affect legume species richness, but significantly reduced legume density and increased legume cover: cover was maximal (∼50%) where 80 kg P ha−1 had been applied with large legume seeds. Increasing P-application had no effect on species richness of non-legume species, but increased the density of weeds and native ephemerals. Cover of non-legume species decreased with increasing P-application rates and was lower in plots where large legumes had been seeded compared with non-seeded plots. There was a significant legume × P interaction on weed and ephemeral density: at 80 kg P ha−1 the decline in density of these groups was greatest where legumes were seeded. In addition, the decline in cover for non-legume species with increasing P was greatest when legumes were seeded. Applying 20 kg P ha−1 significantly increased tree growth compared with tree growth in unfertilised plots, but growth was not increased further at 80 kg ha−1 and tree growth was not affected by seeding large legumes. Taken together, these data indicate that 80 kg ha−1 P-fertiliser in combination with (seeding) large legumes maximised vegetation cover at five years but could be suboptimal for re-establishing a jarrah forest community that, like unmined forest, contains a diverse community of slow-growing re-sprouter species. The species richness and cover of non-legume understorey species, especially the resprouters, was highest in plots that received either 0 or 20 kg ha−1 P and where large legumes had not been seeded. Therefore, our findings suggest that moderation of P-fertiliser and legumes could be the best strategy to fulfil the multiple restoration goals of establishing vegetation cover, while at the same time maximising tree growth and species richness of restored forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant species can condition the physico-chemical and biological properties of soil in ways that modify plant growth via plant–soil feedback (PSF). Plant growth can be positively affected, negatively affected or neutrally affected by soil conditioning by the same or other plant species. Soil conditioning by other plant species has particular relevance to ecological restoration of historic ecosystems because sites set aside for restoration are often conditioned by other, potentially non-native, plant species. We investigated changes in properties of jarrah forest soils after long-term (35 years) conditioning by pines (Pinus radiata), Sydney blue gums (Eucalyptus saligna), both non-native, plantation trees, and jarrah (Eucalyptus marginata; dominant native tree). Then, we tested the influence of the conditioned soils on the growth of jarrah seedlings. Blue gums and pines similarly conditioned the physico-chemical properties of soils, which differed from soil conditioning caused by jarrah. Especially important were the differences in conditioning of the properties C:N ratio, pH, and available K. The two eucalypt species similarly conditioned the biological properties of soil (i.e. community level physiological profile, numbers of fungal-feeding nematodes, omnivorous nematodes, and nematode channel ratio), and these differed from conditioning caused by pines. Species-specific conditioning of soil did not translate into differences in the amounts of biomass produced by jarrah seedlings and a neutral PSF was observed. In summary, we found that decades of soil conditioning by non-native plantation trees did not influence the growth of jarrah seedlings and will therefore not limit restoration of jarrah following the removal of the plantation trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims There is potential for altered plant-soil feedback (PSF) to develop in human-modified ecosystems but empirical data to test this idea are limited. Here, we compared the PSF operating in jarrah forest soil restored after bauxite mining in Western Australia with that operating in unmined soil. Methods Native seedlings of jarrah (Eucalyptus marginata), acacia (Acacia pulchella), and bossiaea (Bossiaea ornata) were grown in unmined and restored soils to measure conditioning of chemical and biological properties as compared with unplanted control soils. Subsequently, acacia and bossiaea were grown in soils conditioned by their own or by jarrah seedlings to determine the net PSF. Results In unmined soil, the three plant species conditioned the chemical properties but had little effect on the biological properties. In comparison, jarrah and bossiaea conditioned different properties of restored soil while acacia did not condition this soil. In unmined soil, neutral PSF was observed, whereas in restored soil, negative PSF was associated with acacia and bossiaea. Conclusions Soil conditioning was influenced by soil context and plant species. The net PSF was influenced by soil context, not by plant species and it was different in restored and unmined soils. The results have practical implications for ecosystem restoration after human activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Western Australian wheatbelt, the restoration of native eucalypt forests for managing degraded agricultural landscapes is a critical part of managing dryland salinity and rebuilding biodiversity. Such reforestation will also sequester carbon. Whereas most investigative emphasis has been on carbon stored in biomass, the effects of reforestation on soil organic carbon (SOC) stores and fertility are not known. Two 26 year old reforestation experiments with four Eucalyptus species (E. cladocalyx var nana, E. occidentalis, E. sargentii and E. wandoo) were compared with agricultural sites (Field). SOC stores (to 0.3 m depth) ranged between 33 and 55 Mg ha−1, with no statistically significant differences between tree species and adjacent farmland. Farming comprised crop and pasture rotations. In contrast, the reforested plots contained additional carbon in the tree biomass (23–60 Mg ha−1) and litter (19–34 Mg ha−1), with the greatest litter accumulation associated with E. sargentii. Litter represented between 29 and 56% of the biomass carbon and the protection or utilization of this litter in fire-prone, semi-arid farmland will be an important component of carbon management. Exch-Na and Exch-Mg accumulated under E. sargentii and E. occidentalis at one site. The results raise questions about the conclusions of SOC sequestration studies following reforestation based on limited sampling and reiterate the importance of considering litter in reforestation carbon accounts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We predicted that P-fertiliser residues will limit the establishment of native plant species and their mycorrhizas to old-fields in the wheat-growing region (i.e. the wheatbelt) of Western Australia. To test this prediction, we assessed the growth and P uptake of seedlings of three native plant species to phosphate addition and inoculation with arbuscular mycorrhizas (AM) in a pot study. The native plant species were Acacia acuminata Benth. (Mimosaceae), Eucalyptus loxophleba Benth. subsp. loxophleba (Myrtaceae) and Hakea preissii Meisn. (Proteaceae); and each pot contained one seedling. P was added to field soil to mimic pre-agricultural (P0), old-field (P1) and 10 times old-field (P10) soils. AM inoculant, which was a mix of Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, Glomus intraradices Schenck and Smith and Glomus mosseae (Nicolson and Gerdemann) Gerdemann and Trappe, was added to half of the pots. After 12 weeks, the biomass and P uptake of the mycorrhizal A. acuminata were greater than those of the non-mycorrhizal plants across all P treatments. Plant biomass decreased significantly with increasing P addition, yet this species was apparently unable to suppress its mycorrhizal colonisation at high P despite this reduction in growth. In contrast, mycorrhizal and non-mycorrhizal E. loxophleba subsp. loxophleba were of a similar biomass after 12 weeks; maximum biomass was attained at intermediate (old-field) levels of P. P uptake increased with increasing P supply, beyond that required to attain maximum biomass. AM did not form on H. preissii. P uptake increased with increasing P supply for this species also. Overall, it is the apparent inability of these species to down-regulate P uptake rather than a lack of mycorrhizal symbiosis that will constrain their establishment on wheatbelt old-fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lowland heath is an internationally important habitat type that has greatly declined in abundance throughout Western Europe. In recent years this has led to a growing interest in the restoration of heathland on agricultural land. This generally requires the use of chemical treatments to return soil chemical conditions to those appropriate for the support of heathland ecosystems. However, the potential for negative impacts on the environment due to the potential of these treatments to increase the availability of trace metals via raised soil acidity requires investigation. A large-scale field study investigated the effect of two chemical treatments used in heathland restoration, elemental sulphur and ferrous sulphate, on soil acidity and whether it is possible to predict the effect of the treatments on availability of two potentially toxic cations (Al and Cd) in the soil along with their subsequent accumulation in the shoots of the grass Agrostis capillaris. Results showed that both treatments decreased soil pH, but that only elemental sulphur produced a pH similar to heathland soil. The availability of Al, measured by extraction with 1 M ammonium nitrate, could not be predicted by soil pH, depth in the soil and total Al concentration in the soil. By contrast, availability of Cd could be predicted from these three variables. Concentrations of both Al and Cd in the shoots of A. capillaris showed no significant relationship with the extractable concentration in the soil. Results are discussed in light of the possible environmental impacts of the chemical restoration techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods used in the restoration of lowland heath vary depending on edaphic factors at a site and need for introduction of ericaceous propagules. This study investigates the effect of some methods on growth of an important ericaceous species, Heather (Calluna vulgaris). It also explores whether success of growth of C. vulgaris in restoration schemes is affected by its degree of colonization by ericoid mycorrhizal fungi (ERM). The success of Heather growth was compared at three sites, a control area of natural heathland and two restoration sites. These were a quarry where soil had been translocated but not chemically manipulated and a site on agricultural land where the top soil had been improved but then either stripped away or acidified prior to attempting heathland restoration. Propagules of C. vulgaris were applied either as turves or as clippings. Results show that clippings produced as dense a cover of C. vulgaris as turves over a period of 13 years and that plants in such swards can exhibit a degree of ERM colonization comparable to that found in mature plants growing in natural heathland. Young (<2 years of age) plants of C. vulgaris had less extensive mycorrhizal colonization of their roots, particularly when growing on restored agricultural soils. A relationship was found between lower levels of mycorrhizal colonization and smaller aboveground plant growth. Success of heathland restoration may be improved by finding means to enhance the rate and extent of mycorrhizal colonization of young C. vulgaris growing in a restoration environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mining is an activity that tends to degrade the environment. The restoration of mining areas, aims to accelerate and improve the succession process according to its future use. The objective of this work was to rehabilitate a soil degraded by tin mining activities in the Amazon Basin (Jamari National Forest, State of Rondonia) with the application of water treatment sludge (WTS), and verify the effect of Sludge on Values of pH (CaCl2 0.01 mol L-1), organic matter, P, Ca, Mg, K, H+Al, and soil micronutrient contents when Cultivated with native plants, legumes, and grass species. A factorial (3 x 5) experimental design was used to optimize the rehabilitation of these areas including three N rates (100, 200, and 300 mg N ka(-1) soil supplied by WTS), five plant species (grasses, legumes, and native plants), and two controls (degraded soil with no fertilizer and degraded soil fertilized with mineral fertilizers), with four replications. WTS increased pH values. The chemical products used to treat the water contributed, in greater extension, to increase soil Ca and Fe contents. The use of WTS as fertilizer proved viable, since it contains nutrients for plants; however, nitrogen Should not be used as a criterion to define the rate of Sludge application, because it is present at small amounts in the WTS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strategy to measure bacterial functional redundancy was developed and tested with soils collected along a soil reclamation gradient by determining the richness and diversity of bacterial groups capable of in situ growth on selected carbon substrates. Soil cores were collected from four sites along a transect from the Jamari tin mine site in the Jamari National Forest, Rondonia, RO, Brazil: denuded mine spoil, soil from below the canopy of invading pioneer trees, revegetated soil under new growth on the forest edge, and the forest floor of an adjacent preserved forest. Bacterial population responses were analyzed by amending these soil samples with individual carbon substrates in the presence of bromodeoxyuridine (BrdU), BrdU-labeled DNA was then subjected to a 16S-23S rRNA intergenic analysis to depict the actively growing bacteria from each site, the number and diversity of bacterial groups responding to four carbon substrates (L-serine, L-threonine, sodium citrate, and or-lactose hydrate) increased along the reclamation-vegetation gradient such that the preserved forest soil samples contained the highest functional redundancy for each substrate. These data suggest that bacterial functional redundancy increases in relation to the regrowth of plant communities and may therefore represent an important aspect of the restoration of soil biological functionality to reclaimed mine spoils. They also suggest that bacterial functional redundancy may be a useful indicator of soil quality and ecosystem functioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species ("legume mixture"), and a species-diverse, legume-poor mixture of all successional groups ("diverse mixture"). After 7 years, the legume mixture had 6-fold higher abundance of N(2)-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N(2)-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N(2)-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N(2)-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified taungya agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.