998 resultados para Soil microbiology.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel Gram-positive, motile, rod-shaped bacterium isolated from a saline soil in China was characterized by a polyphasic taxonomic approach. The strain, designated YC1(T), was halotolerant [tolerating up to 15 % (w/v) NaCl] and alkaliphilic (growing at

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A taxonomic study was performed on strain HR1(T), which was isolated from a desert soil sample collected from Xinjiang Province (China). Cells were aerobic, Gram-positive-staining, pink-pigmented, sporulating rods with a single lateral flagellum. The orga

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel actinomycete strain, designated YIM 002(T), was isolated from a desert soil sample in Gansu Province, north-west China. This actinomycete isolate formed well-differentiated aerial and substrate mycelia. In the early stages of growth, the substrate mycelia fragmented into short or elongated rods. Chemotaxonomically, it contained LL-2,6-diaminopimelic acid in the cell wall. The cell-wall sugars contained ribose and glucose. Phospholipids present were phosphatidylinositol mannosides, phosphatidylinositol and diphosphatidylglycerol. MK-9(H-4) was the predominant menaquinone. The major fatty acids were anteiso C-15:0 (35.92%), anteiso C-17:0 (15.84%), iso C-15:0 (10.40%), iso C-16:0 (7.07%) and C(17:10)w8c (9.37%). The G+C content of the DNA was 70 mol%. Phylogenetic analysis and signature nucleotide data based on 16S rRNA gene sequences showed that strain YIM 002(T) is distinct from all recognized genera of the family Nocardioidaceae in the suborder Propionibacterineae. On the basis of the phenotypic and genotypic characteristics, it is proposed that isolate YIM 002(T) be classified as a novel species in a new genus, Jiangella gansuensis gen. nov., sp. nov. The type strain is YIM 002(T) (= DSM 44835(T) = CCTCC AA 204001(T) = KCTC 19044(T)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seedlings of clover (Triflorium hybridum) were colonized by Bacillus thuringiensis when spores and seeds were co-inoculated into soil. Both a strain isolated in the vegetative form from the phylloplane of clover, 2810-S-4, and a laboratory strain, HD-1, were able to colonize clover to a density of about 1000 CFU/g leaf when seeds were sown in sterile soil and to a density of about 300 CFU/g leaf in nonsterile soil. A strain lacking the characteristic insecticidal crystal proteins produced a similar level of colonization over a 5-week period as the wild type strain, indicating that crystal production was not a mitigating factor during colonization. A small plasmid, pBC16, was transferred between strains of B. thuringiensis when donor and recipient strains were sprayed in vegetative form onto leaves of clover and pak choi (Brassica campestris var. chinensis). The rate of transfer was about 0.1 transconjugants/recipient and was dependent on the plant species. The levels of B. thuringiensis that naturally colonized leaves of pak choi produced negligible levels of mortality in third instar larvae of Pieris brassicae feeding on the plants. Considerable multiplication occurred in the excreted frass but not in the guts of living insects. Spores in the frass could be a source of recolonization from the soil and be transferred to other plants. These findings illustrate a possible cycle, not dependent on insect pathology, by which B. thuringiensis diversifies and maintains itself in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. Methods and Results: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. Conclusion: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. Significance and Impact of the Study: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.