987 resultados para Soil aggregate stability
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.
Resumo:
Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high.
Resumo:
ABSTRACT Changes in soil physical properties due to different management systems occur slowly, and long-term studies are needed to assess soil quality. The objectives of this study were to evaluate the effects of soil management systems and liming methods on the physical properties of a Latossolo Bruno Alumínico típico (Hapludox). A long-term experiment that began in 1978 with conventional and no-tillage systems was assessed. In addition, different liming methods (no lime, incorporated lime, and lime on the soil surface) have been applied since 1987 and were also evaluated in this study. Moreover, an area of native forest was evaluated and considered a reference for the natural condition of the soil. Soil physical properties were evaluated in layers to a depth of 1.00 m. Compared to native forest, the conventional tillage and no-tillage systems had higher soil bulk density, penetration resistance, and microporosity, and lower aggregate stability and macroporosity. Compared to the conventional tillage system, long-term no-tillage improved the structure of the Hapludox, as evidenced by increased microporosity and aggregate stability, especially in the soil surface layer. In no-tillage with lime applications sporadically incorporated, soil physical properties did not differ from no-tillage without lime and with lime applied on the soil surface, indicating that this practice maintains the physical quality of soil under no-tillage. Liming in a conventional tillage system improved soil aggregation and reduces penetration resistance in the soil layers near the soil surface. No-tillage was the main practice related to improvement of soil physical quality, and liming methods did not influence soil physical properties in this soil management system.
Resumo:
Archived soils could represent a valuable resource for the spatio-temporal inventory of soil carbon stability. However, archived soils are usually air-dried before storage and the impact of a drying pretreatment on physically and chemically-defined C fractions has not yet been fully assessed. Through the comparison of field-moist and corresponding air-dried (at 25oC for 2 weeks) forest soil samples, we examined the effect of air-drying on: a) the quantity and the quality of cold- (CWEC) and hot-water (HWEC) extractable C and b) the concentration of C in physically isolated fractions (free- and intra-aggregate light and organo-mineral). Soil samples were collected from the organic (O) and mineral (A and B) horizons of three different forest soils from southeastern England: (i) Cambisol under Pine (Pinus nigra); (ii) Cambisol under Beech (Fagus sylvatica) and (iii) Gleysol under oak (Quercus robur). CWEC concentrations for dry samples were up to 2 times greater than for corresponding field moist samples and had significantly (p < 0.001) higher phenolic content. However, the effect of drying pretreatment on HWEC, its phenolic content was not significant (p > 0.05) for most samples. Dried soils had significantly (p < 0.001) higher concentrations of free light-C while having lower concentrations of intra-aggregate-C when compared to moist samples (p < 0.001). However, fine silt and clay fractions were not significantly affected by the drying pretreatment (p=0.789). Therefore, based on the results obtained from gleysol and cambisol forest soils studied here, C contents in hot-water extractions and fine particle size physical fractions (< 25µm) seem to be robust measurements for evaluating C fractions in dried stored forest soils. Further soil types should be tested to evaluate the wider generality of these findings.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several changes in the soil humus characteristics were observed after clearing the Central Brazil virgin forest. When compared with the original ''Cerrado'' forest, the soils from the agricultural systems showed increased values for cation exchange capacity, total organic matter and non-extractable humin. The humic acid fraction underwent some changes suggesting increased oxidation and decreased aliphatic content. The soil organic N tends to accumulate in the insoluble humus fractions.The above changes were much less intense when the virgin forest was transformed into pastures. Under these conditions, the most significant changes were the reduction of readily biodegradable soil organic matter fractions.In view of the intensity of the lixiviation processes in the area studied, the above changes may be connected with the reduction in aggregate stability observed in the cleared sites.In general, the characteristics of the humus formations in the ''Cerrado'' region suggested high resistance to external factors, which is in part attributed to the active insolubilization of humic colloids by the Al and Fe oxides. In the absence of erosive processes in the cleared sites, additional humus stability may conform both to selective biodegradation and/or lixiviation of the humic colloids, or to the effects of the fire used in soil management.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.
Resumo:
Mode of access: Internet.
Resumo:
The irrigation of pasture with saline, Na-contaminated industrial wastewater typically results in an increase in soil ESP. From current knowledge (derived largely from cultivated agricultural soils), although these sodic soils are likely to remain stable whilst irrigated with effluent (due to the effluent’s large electrolyte concentration), during rainfall periods of low electrolyte concentration these soils would be expected to disperse. However, effluent irrigated pasture soils have been observed to maintain their structure even during intense rainfall events. Three soil types were collected (Sodosol, Vertosol and Dermosol), each with a cultivated/non-cultivated pair. The soils were equilibrated with various SAR solutions and then leached with deionised water to allow the measurement of saturated hydraulic conductivity (Ksat). At low SARs, Ksat tended to be greater in non-cultivated than cultivated soils and is attributable to a loss of structure associated with cultivation. In addition, as SAR increased, the reduction in relative Ksat tended to be significantly greater in cultivated than non-cultivated soils. The relatively rapid saturated hydraulic conductivity in the non-cultivated soils at large SARs is due to a greater aggregate stability due to greater soil C content. For the sustainable disposal of saline effluent, it is therefore necessary to ensure that soils remain undisturbed and preferably under pasture, thus maximising soil structural stability and hydraulic conductivity.
Resumo:
A slope stability model is derived for an infinite slope subjected to unsaturated infiltration flow above a phreatic surface. Closed form steady state solutions are derived for the matric suction and degree of saturation profiles. Soil unit weight, consistent with the degree of saturation profile, is also directly calculated and introduced into the analyzes, resulting in closed-form solutions for typical soil parameters and an infinite series solution for arbitrary soil parameters. The solutions are coupled with the infinite slope stability equations to establish a fully realized safety factor function. In general, consideration of soil suction results in higher factor of safety. The increase in shear strength due to the inclusion of soil suction is analogous to making an addition to the cohesion, which, of course, increases the factor of safety against sliding. However, for cohesive soils, the results show lower safety factors for slip surfaces approaching the phreatic surface compared to those produced by common safety factor calculations. The lower factor of safety is due to the increased soil unit weight considered in the matric suction model but not usually accounted for in practice wherein the soil is treated as dry above the phreatic surface. The developed model is verified with a published case study, correctly predicting stability under dry conditions and correctly predicting failure for a particular storm.
Resumo:
A new method is presented which allows the separation of the soil aggregate exterior from the aggregate core. The method employs a combination of aggregate freezing with rapid separation of aggregate exteriors using ultrasonic energy. The factors influencing the thickness of the removed aggregate surface layer include water content of the aggregate prior to freezing, temperature difference between that of the frozen aggregate and that of the liquid it is submerged in during sonification, sonification time and energy, and the type of the immersion liquid. The success of the method and the thickness of the removed aggregate surface were examined using barium ( Ba2+) as a tracer. Barium ( as BaCl2) is rapidly absorbed by soil and is present at only very low levels in natural soils. Surface layers of 0.2 - 0.4 cm thickness were successfully removed from aggregates of 1 - 4 cm diameter. Two examples are given from soils in northern NSW to demonstrate the occurrence of small- scale heterogeneity in soil chemical properties. Compared with the surface fraction, a 4 - 7% higher calcium concentration was found in the core fraction of a clay loam soil ( Dermosol). Conversely, on a cracking clay soil ( Vertosol), atrazine concentration was around 15 times greater in the aggregate surface fractions compared with core fractions. Compared with the traditional estimation of soil chemical properties on homogenised bulk soil samples, it is suggested that separate analysis of aggregate surface and core fractions could provide useful additional information on the relationships between soil properties and environmental responses.
The effect of plantation silviculture on soil organic matter and particle-size fractions in Amazonia
Resumo:
Eucalyptus grandis and other clonal plantations cover about 3.5 million ha in Brazil. The impacts of intensively-managed short-rotation forestry on soil aggregate structure and Carbon (C) dynamics are largely undocumented in tropical ecosystems. Long-term sustainability of these systems is probably in part linked to maintenance of soil organic matter and good soil structure and aggregation, especially in areas with low-fertility soils. This study investigated soil aggregate dynamics on a clay soil and a sandy soil, each with a Eucalyptus plantation and an adjacent primary forest. Silvicultural management did not reduce total C stocks, and did not change soil bulk density. Aggregates of the managed soils did not decrease in mass as hypothesized, which indicates that soil cultivation in 6 year cycles did not cause large decreases in soil aggregation in either soil texture. Silt, clay, and C of the sandy plantation soil shifted to greater aggregate protection, which may represent a decrease in C availability. The organic matter in the clay plantation soil increased in the fractions considered less protected while this shift from C to structural forms considered more protected was not observed.