950 resultados para Software repository mining. Process mining. Software developer contribution


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les sociétés modernes dépendent de plus en plus sur les systèmes informatiques et ainsi, il y a de plus en plus de pression sur les équipes de développement pour produire des logiciels de bonne qualité. Plusieurs compagnies utilisent des modèles de qualité, des suites de programmes qui analysent et évaluent la qualité d'autres programmes, mais la construction de modèles de qualité est difficile parce qu'il existe plusieurs questions qui n'ont pas été répondues dans la littérature. Nous avons étudié les pratiques de modélisation de la qualité auprès d'une grande entreprise et avons identifié les trois dimensions où une recherche additionnelle est désirable : Le support de la subjectivité de la qualité, les techniques pour faire le suivi de la qualité lors de l'évolution des logiciels, et la composition de la qualité entre différents niveaux d'abstraction. Concernant la subjectivité, nous avons proposé l'utilisation de modèles bayésiens parce qu'ils sont capables de traiter des données ambiguës. Nous avons appliqué nos modèles au problème de la détection des défauts de conception. Dans une étude de deux logiciels libres, nous avons trouvé que notre approche est supérieure aux techniques décrites dans l'état de l'art, qui sont basées sur des règles. Pour supporter l'évolution des logiciels, nous avons considéré que les scores produits par un modèle de qualité sont des signaux qui peuvent être analysés en utilisant des techniques d'exploration de données pour identifier des patrons d'évolution de la qualité. Nous avons étudié comment les défauts de conception apparaissent et disparaissent des logiciels. Un logiciel est typiquement conçu comme une hiérarchie de composants, mais les modèles de qualité ne tiennent pas compte de cette organisation. Dans la dernière partie de la dissertation, nous présentons un modèle de qualité à deux niveaux. Ces modèles ont trois parties: un modèle au niveau du composant, un modèle qui évalue l'importance de chacun des composants, et un autre qui évalue la qualité d'un composé en combinant la qualité de ses composants. L'approche a été testée sur la prédiction de classes à fort changement à partir de la qualité des méthodes. Nous avons trouvé que nos modèles à deux niveaux permettent une meilleure identification des classes à fort changement. Pour terminer, nous avons appliqué nos modèles à deux niveaux pour l'évaluation de la navigabilité des sites web à partir de la qualité des pages. Nos modèles étaient capables de distinguer entre des sites de très bonne qualité et des sites choisis aléatoirement. Au cours de la dissertation, nous présentons non seulement des problèmes théoriques et leurs solutions, mais nous avons également mené des expériences pour démontrer les avantages et les limitations de nos solutions. Nos résultats indiquent qu'on peut espérer améliorer l'état de l'art dans les trois dimensions présentées. En particulier, notre travail sur la composition de la qualité et la modélisation de l'importance est le premier à cibler ce problème. Nous croyons que nos modèles à deux niveaux sont un point de départ intéressant pour des travaux de recherche plus approfondis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La révision du code est un procédé essentiel quelque soit la maturité d'un projet; elle cherche à évaluer la contribution apportée par le code soumis par les développeurs. En principe, la révision du code améliore la qualité des changements de code (patches) avant qu'ils ne soient validés dans le repertoire maître du projet. En pratique, l'exécution de ce procédé n'exclu pas la possibilité que certains bugs passent inaperçus. Dans ce document, nous présentons une étude empirique enquétant la révision du code d'un grand projet open source. Nous investissons les relations entre les inspections des reviewers et les facteurs, sur les plans personnel et temporel, qui pourraient affecter la qualité de telles inspections.Premiérement, nous relatons une étude quantitative dans laquelle nous utilisons l'algorithme SSZ pour détecter les modifications et les changements de code favorisant la création de bogues (bug-inducing changes) que nous avons lié avec l'information contenue dans les révisions de code (code review information) extraites du systéme de traçage des erreurs (issue tracking system). Nous avons découvert que les raisons pour lesquelles les réviseurs manquent certains bogues était corrélées autant à leurs caractéristiques personnelles qu'aux propriétés techniques des corrections en cours de revue. Ensuite, nous relatons une étude qualitative invitant les développeurs de chez Mozilla à nous donner leur opinion concernant les attributs favorables à la bonne formulation d'une révision de code. Les résultats de notre sondage suggèrent que les développeurs considèrent les aspects techniques (taille de la correction, nombre de chunks et de modules) autant que les caractéristiques personnelles (l'expérience et review queue) comme des facteurs influant fortement la qualité des revues de code.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Generalized hyper competitiveness in the world markets has determined the need to offer better products to potential and actual clients in order to mark an advantagefrom other competitors. To ensure the production of an adequate product, enterprises need to work on the efficiency and efficacy of their business processes (BPs) by means of the construction of Interactive Information Systems (IISs, including Interactive Multimedia Documents) so that they are processed more fluidly and correctly.The construction of the correct IIS is a major task that can only be successful if the needs from every intervenient are taken into account. Their requirements must bedefined with precision, extensively analyzed and consequently the system must be accurately designed in order to minimize implementation problems so that the IIS isproduced on schedule and with the fewer mistakes as possible. The main contribution of this thesis is the proposal of Goals, a software (engineering) construction process which aims at defining the tasks to be carried out in order to develop software. This process defines the stakeholders, the artifacts, and the techniques that should be applied to achieve correctness of the IIS. Complementarily, this process suggests two methodologies to be applied in the initial phases of the lifecycle of the Software Engineering process: Process Use Cases for the phase of requirements, and; MultiGoals for the phases of analysis and design. Process Use Cases is a UML-based (Unified Modeling Language), goal-driven and use case oriented methodology for the definition of functional requirements. It uses an information oriented strategy in order to identify BPs while constructing the enterprise’s information structure, and finalizes with the identification of use cases within the design of these BPs. This approach provides a useful tool for both activities of Business Process Management and Software Engineering. MultiGoals is a UML-based, use case-driven and architectural centric methodology for the analysis and design of IISs with support for Multimedia. It proposes the analysis of user tasks as the basis of the design of the: (i) user interface; (ii) the system behaviour that is modeled by means of patterns which can combine Multimedia and standard information, and; (iii) the database and media contents. This thesis makes the theoretic presentation of these approaches accompanied with examples from a real project which provide the necessary support for the understanding of the used techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of self-adaptive software (SaS) has specific characteristics compared to traditional one, since it allows that changes to be incorporated at runtime. Automated processes have been used as a feasible solution to conduct the software adaptation at runtime. In parallel, reference model has been used to aggregate knowledge and architectural artifacts, since capture the systems essence of specific domains. However, there is currently no reference model based on reflection for the development of SaS. Thus, the main contribution of this paper is to present a reference model based on reflection for development of SaS that have a need to adapt at runtime. To present the applicability of this model, a case study was conducted and good perspective to efficiently contribute to the area of SaS has been obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The integration of sequencing and gene interaction data and subsequent generation of pathways and networks contained in databases such as KEGG Pathway is essential for the comprehension of complex biological processes. We noticed the absence of a chart or pathway describing the well-studied preimplantation development stages; furthermore, not all genes involved in the process have entries in KEGG Orthology, important information for knowledge application with relation to other organisms. Results: In this work we sought to develop the regulatory pathway for the preimplantation development stage using text-mining tools such as Medline Ranker and PESCADOR to reveal biointeractions among the genes involved in this process. The genes present in the resulting pathway were also used as seeds for software developed by our group called SeedServer to create clusters of homologous genes. These homologues allowed the determination of the last common ancestor for each gene and revealed that the preimplantation development pathway consists of a conserved ancient core of genes with the addition of modern elements. Conclusions: The generation of regulatory pathways through text-mining tools allows the integration of data generated by several studies for a more complete visualization of complex biological processes. Using the genes in this pathway as “seeds” for the generation of clusters of homologues, the pathway can be visualized for other organisms. The clustering of homologous genes together with determination of the ancestry leads to a better understanding of the evolution of such process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis analyses problems related to the applicability, in business environments, of Process Mining tools and techniques. The first contribution is a presentation of the state of the art of Process Mining and a characterization of companies, in terms of their "process awareness". The work continues identifying circumstance where problems can emerge: data preparation; actual mining; and results interpretation. Other problems are the configuration of parameters by not-expert users and computational complexity. We concentrate on two possible scenarios: "batch" and "on-line" Process Mining. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the "case-ids" whenever this field is not explicitly indicated. After that, we concentrated on problems at mining time and we propose the generalization of a well-known control-flow discovery algorithm in order to exploit non instantaneous events. The usage of interval-based recording leads to an important improvement of performance. Later on, we report our work on the parameters configuration for not-expert users. We present two approaches to select the "best" parameters configuration: one is completely autonomous; the other requires human interaction to navigate a hierarchy of candidate models. Concerning the data interpretation and results evaluation, we propose two metrics: a model-to-model and a model-to-log. Finally, we present an automatic approach for the extension of a control-flow model with social information, in order to simplify the analysis of these perspectives. The second part of this thesis deals with control-flow discovery algorithms in on-line settings. We propose a formal definition of the problem, and two baseline approaches. The actual mining algorithms proposed are two: the first is the adaptation, to the control-flow discovery problem, of a frequency counting algorithm; the second constitutes a framework of models which can be used for different kinds of streams (stationary versus evolving).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As more and more open-source software components become available on the internet we need automatic ways to label and compare them. For example, a developer who searches for reusable software must be able to quickly gain an understanding of retrieved components. This understanding cannot be gained at the level of source code due to the semantic gap between source code and the domain model. In this paper we present a lexical approach that uses the log-likelihood ratios of word frequencies to automatically provide labels for software components. We present a prototype implementation of our labeling/comparison algorithm and provide examples of its application. In particular, we apply the approach to detect trends in the evolution of a software system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the empirical evidence that the ratio of email messages in public mailing lists to versioning system commits has remained relatively constant along the history of the Apache Software Foundation (ASF), this paper has as goal to study what can be inferred from such a metric for projects of the ASF. We have found that the metric seems to be an intensive metric as it is independent of the size of the project, its activity, or the number of developers, and remains relatively independent of the technology or functional area of the project. Our analysis provides evidence that the metric is related to the technical effervescence and popularity of project, and as such can be a good candidate to measure its healthy evolution. Other, similar metrics -like the ratio of developer messages to commits and the ratio of issue tracker messages to commits- are studied for several projects as well, in order to see if they have similar characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A main factor to the success of any organization process improvement effort is the Process Asset Library implementation that provides a central database accessible by anyone at the organization. This repository includes any process support materials to help process deployment. Those materials are composed of organization's standard software process, software process related documentation, descriptions of the software life cycles, guidelines, examples, templates, and any artefacts that the organization considers useful to help the process improvement. This paper describe the structure and contents of the Web-based Process Asset Library for Small businesses and small groups within large organizations. This library is structured using CMMI as reference model in order to implement those Process Areas described by this model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mobile apps market is a tremendous success, with millions of apps downloaded and used every day by users spread all around the world. For apps’ developers, having their apps published on one of the major app stores (e.g. Google Play market) is just the beginning of the apps lifecycle. Indeed, in order to successfully compete with the other apps in the market, an app has to be updated frequently by adding new attractive features and by fixing existing bugs. Clearly, any developer interested in increasing the success of her app should try to implement features desired by the app’s users and to fix bugs affecting the user experience of many of them. A precious source of information to decide how to collect users’ opinions and wishes is represented by the reviews left by users on the store from which they downloaded the app. However, to exploit such information the app’s developer should manually read each user review and verify if it contains useful information (e.g. suggestions for new features). This is something not doable if the app receives hundreds of reviews per day, as happens for the very popular apps on the market. In this work, our aim is to provide support to mobile apps developers by proposing a novel approach exploiting data mining, natural language processing, machine learning, and clustering techniques in order to classify the user reviews on the basis of the information they contain (e.g. useless, suggestion for new features, bugs reporting). Such an approach has been empirically evaluated and made available in a web-­‐based tool publicly available to all apps’ developers. The achieved results showed that the developed tool: (i) is able to correctly categorise user reviews on the basis of their content (e.g. isolating those reporting bugs) with 78% of accuracy, (ii) produces clusters of reviews (e.g. groups together reviews indicating exactly the same bug to be fixed) that are meaningful from a developer’s point-­‐of-­‐view, and (iii) is considered useful by a software company working in the mobile apps’ development market.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.