870 resultados para Social event detection
Resumo:
SETTING Drug resistance threatens tuberculosis (TB) control, particularly among human immunodeficiency virus (HIV) infected persons. OBJECTIVE To describe practices in the prevention and management of drug-resistant TB under antiretroviral therapy (ART) programs in lower-income countries. DESIGN We used online questionnaires to collect program-level data on 47 ART programs in Southern Africa (n = 14), East Africa (n = 8), West Africa (n = 7), Central Africa (n = 5), Latin America (n = 7) and the Asia-Pacific (n = 6 programs) in 2012. Patient-level data were collected on 1002 adult TB patients seen at 40 of the participating ART programs. RESULTS Phenotypic drug susceptibility testing (DST) was available in 36 (77%) ART programs, but was only used for 22% of all TB patients. Molecular DST was available in 33 (70%) programs and was used in 23% of all TB patients. Twenty ART programs (43%) provided directly observed therapy (DOT) during the entire course of treatment, 16 (34%) during the intensive phase only, and 11 (23%) did not follow DOT. Fourteen (30%) ART programs reported no access to second-line anti-tuberculosis regimens; 18 (38%) reported TB drug shortages. CONCLUSIONS Capacity to diagnose and treat drug-resistant TB was limited across ART programs in lower-income countries. DOT was not always implemented and drug supplies were regularly interrupted, which may contribute to the global emergence of drug resistance.
Resumo:
Functional neuroimaging studies in human subjects using positron emission tomography or functional magnetic resonance imaging (fMRI) are typically conducted by collecting data over extended time periods that contain many similar trials of a task. Here methods for acquiring fMRI data from single trials of a cognitive task are reported. In experiment one, whole brain fMRI was used to reliably detect single-trial responses in a prefrontal region within single subjects. In experiment two, higher temporal sampling of a more limited spatial field was used to measure temporal offsets between regions. Activation maps produced solely from the single-trial data were comparable to those produced from blocked runs. These findings suggest that single-trial paradigms will be able to exploit the high temporal resolution of fMRI. Such paradigms will provide experimental flexibility and time-resolved data for individual brain regions on a trial-by-trial basis.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
There has been a huge growth of social network in the recent years. This trend does not only allow us to get connected and share the information in an efficient way, but also reveals some potential beneficial in dealing with several social issues, such as earthquake detection, social spam detection, flu pandemic tracking, media monitoring, etc. In this paper, we propose a new way of utilizing social network. By implementing what is called a Virtual Celebrator Machine (VCM), we are able to let everyone who has connection with this machine in term of social networking be able to share their cultural experience and points of view about certain social events locally or globally. In that way, we provide a way to reinforce the relationship and connection between people virtually, which, we believe, would help to flourish cultural heritage preservation.
Resumo:
The Semantic Web has come a long way since its inception in 2001, especially in terms of technical development and research progress. However, adoption by non- technical practitioners is still an ongoing process, and in some areas this process is just now starting. Emergency response is an area where reliability and timeliness of information and technologies is of essence. Therefore it is quite natural that more widespread adoption in this area has not been seen until now, when Semantic Web technologies are mature enough to support the high requirements of the application area. Nevertheless, to leverage the full potential of Semantic Web research results for this application area, there is need for an arena where practitioners and researchers can meet and exchange ideas and results. Our intention is for this workshop, and hopefully coming workshops in the same series, to be such an arena for discussion. The Extended Semantic Web Conference (ESWC - formerly the European Semantic Web conference) is one of the major research conferences in the Semantic Web field, whereas this is a suitable location for this workshop in order to discuss the application of Semantic Web technology to our specific area of applications. Hence, we chose to arrange our first SMILE workshop at ESWC 2013. However, this workshop does not focus solely on semantic technologies for emergency response, but rather Semantic Web technologies in combination with technologies and principles for what is sometimes called the "social web". Social media has already been used successfully in many cases, as a tool for supporting emergency response. The aim of this workshop is therefore to take this to the next level and answer questions like: "how can we make sense of, and furthermore make use of, all the data that is produced by different kinds of social media platforms in an emergency situation?" For the first edition of this workshop the chairs collected the following main topics of interest: • Semantic Annotation for understanding the content and context of social media streams. • Integration of Social Media with Linked Data. • Interactive Interfaces and visual analytics methodologies for managing multiple large-scale, dynamic, evolving datasets. • Stream reasoning and event detection. • Social Data Mining. • Collaborative tools and services for Citizens, Organisations, Communities. • Privacy, ethics, trustworthiness and legal issues in the Social Semantic Web. • Use case analysis, with specific interest for use cases that involve the application of Social Media and Linked Data methodologies in real-life scenarios. All of these, applied in the context of: • Crisis and Disaster Management • Emergency Response • Security and Citizen Journalism The workshop received 6 high-quality paper submissions and based on a thorough review process, thanks to our program committee, the decision was made to accept four of these papers for the workshop (67% acceptance rate). These four papers can be found later in this proceedings volume. Three out of four of these papers particularly discuss the integration and analysis of social media data, using Semantic Web technologies, e.g. for detecting complex events in social media streams, for visualizing and analysing sentiments with respect to certain topics in social media, or for detecting small-scale incidents entirely through the use of social media information. Finally, the fourth paper presents an architecture for using Semantic Web technologies in resource management during a disaster. Additionally, the workshop featured an invited keynote speech by Dr. Tomi Kauppinen from Aalto university. Dr. Kauppinen shared experiences from his work on applying Semantic Web technologies to application fields such as geoinformatics and scientific research, i.e. so-called Linked Science, but also recent ideas and applications in the emergency response field. His input was also highly valuable for the roadmapping discussion, which was held at the end of the workshop. A separate summary of the roadmapping session can be found at the end of these proceedings. Finally, we would like to thank our invited speaker Dr. Tomi Kauppinen, all our program committee members, as well as the workshop chair of ESWC2013, Johanna Völker (University of Mannheim), for helping us to make this first SMILE workshop a highly interesting and successful event!
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the advantage of cheaper and increased sampling but make available so much data that automated analysis becomes essential. The report describes a number of tools for automated analysis of recordings, including noise removal from spectrograms, acoustic event detection, event pattern recognition, spectral peak tracking, syntactic pattern recognition applied to call syllables, and oscillation detection. These algorithms are applied to a number of animal call recognition tasks, chosen because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are frequent contaminants of recordings of the terrestrial environment; (2) the detection of bird and calls; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
In this video, white words and phrases fade quickly in and out amongst small bursting dots of colour. Set to an energetic, synthesised soundtrack, the animated text combines, and sometimes confuses, an internal monologue with dialogue and overheard conversations. The unfolding narrative follows an unnamed narrator through a crowded social event. By visually and textually mixing self-conscious reflections with polite conversations, “Mingling” explores the social niceties and nervous behaviours that often inform our interpersonal experiences. Through its fast-paced and disjointed rendering of verbal communication, the work playfully draws out the sometimes-awkward and uncomfortable dialogues that exist between personal and social, internal and external, imagined and actual. This work was commission by the Museum of Contemporary Art, Australia (Sydney), to celebrate the organisation’s major redevelopment and acknowledge the generosity of individuals and organisations who supported the capital project.
Resumo:
This paper examines the effects of an eco-driving message on driver distraction. Two in-vehicle distracter tasks were compared with an eco-driving task and a baseline task in an advanced driving simulator. N = 22 subjects were asked to perform an eco-driving, CD changing, and a navigation task while engaged in critical manoeuvres during which they were expected to respond to a peripheral detection task (PDT) with total duration of 3.5 h. The study involved two sessions over two consecutive days. The results show that drivers’ mental workloads are significantly higher during navigation and CD changing tasks in comparison to the two other scenarios. However, eco-driving mental workload is still marginally significant (p ∼ .05) across different manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario. Analysis of the practice effect shows that drivers’ baseline scenario and navigation scenario exhibit significantly less demand on the second day. Drivers also can detect significantly more events on the second day for all scenarios. The authors conclude that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that sending text as an eco-driving message analogous to the study circumstances should not be delivered to drivers on-line when vehicle is in motion.
Resumo:
Driver distraction has recently been defined by Regan as "the diversion of attention away from activities critical for safe driving toward a competing activity, which may result in insufficient or no attention to activities critical for safe driving (Regan, Hallett & Gordon, 2011, p.1780)". One source of distraction is in-vehicle devices, even though they might provide other benefits, e.g. navigation systems. Currently, eco-driving systems have been growing rapidly in popularity. These systems send messages to drivers so that driving performance can be improved in terms of fuel efficiency. However, there remain unanswered questions about whether eco-driving systems endanger drivers by distracting them. In this research, the CARRS-Q advanced driving simulator was used in order to provide safety for participants and meanwhile simulate real world driving. The distraction effects of tasks involving three different in-vehicle systems were investigated: changing a CD, entering a five digit number as a part of navigation task and responding to an eco-driving task. Driving in these scenarios was compared with driving in the absence of these distractions, and while drivers engaged in critical manoeuvres. In order to account for practice effects, the same scenarios were duplicated on a second day. The three in-vehicle systems were not the exact facsimiles of any particular existing system, but were designed to have similar characteristics to those of system available. In general, the results show that drivers’ mental workloads are significantly higher in navigation and CD changing scenarios in comparison to the two other scenarios, which implies that these two tasks impose more visual/manual and cognitive demands. However, eco-driving mental workload is still high enough to be called marginally significant (p ~ .05) across manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario across manoeuvres. Analysis of the practice effect shows that drivers’ baseline scenario and navigation scenario exhibit significantly less demand on the second day. However, the number of missed events across manoeuvres confirmed that drivers can detect significantly more events on the second day for all scenarios. Distraction was also examined separately for five groups of manoeuvres (straight, lane changing, overtaking, braking for intersections and braking for roundabouts), in two locations for each condition. Repeated measures mixed ANOVA results show that reading an eco-driving message can potentially impair driving performance. When comparing the three in–vehicle distractions tested, attending to an eco-driving message is similar in effect to the CD changing task. The navigation task degraded driver performance much more than these other sources of distraction. In lane changing manoeuvres, drivers’ missed response counts degraded when they engaged in reading eco-driving messages at the first location. However, drivers’ event detection abilities deteriorated less at the second lane changing location. In baseline manoeuvres (driving straight), participants’ mean minimum speed degraded more in the CD changing scenario. Drivers’ lateral position shifted more in both CD changing and navigation tasks in comparison with both eco-driving and baseline scenarios, so they were more visually distracting. Participants were better at event detection in baseline manoeuvres in comparison with other manoeuvres. When approaching an intersection, the navigation task caused more events to be missed by participants, whereas eco-driving messages seemed to make drivers less distracted. The eco-driving message scenario was significantly less distracting than the navigation system scenario (fewer missed responses) when participants commenced braking for roundabouts. To sum up, in spite of the finding that two other in-vehicle tasks are more distracting than the eco-driving task, the results indicate that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. This suggests that in-vehicle eco-driving systems have the potential to contribute to increased crash risk through distraction. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that eco-driving messages be delivered to drivers off-line when possible.